Growth and characterization of Ga2O3 and ZnMgO thin films for solar-blind ultraviolet applications (2020-2023)

Project leader Ramūnas Nedzinskas

Agreement No 1.1.1.2/16/I/001

Research application No 1.1.1.2/VIAA/3/19/442

Deep ultraviolet (UV) photodetectors based on wide-bandgap semiconductors can be used in a variety of applications in defense, astronomy, flame detection, biomedicine, chemical sensing water purification, etc. The concept of this project is to extensively verify the applicability of emerging wide bandgap (WBG) semiconductor Ga2O3 along with the novel pseudobinary system of ZnO-MgO for the needs of ultraviolet (UV) sensor applications, with a particular interest in p-type doping of both materials. Indeed, since a bandgap of beta-Ga2O3 is 4.6­­–4.9 eV, and a tunable bandgap of recently developed ZnMgO can be taylored within 3.3–7.8 eV, both materials are very attractive for their solar-blind nature.

In this project we seek to achieve new insights into the most perspective UV sensing materials by investigation of beta-Ga2O3 and ZnMgO semiconductor thin film structures, exclusively produced in Latvia, as a result of advanced technology transfer from Taiwan. The project includes the number of inbound and outbound training with further activities sweeping from technological growth, fundamental (optical and electrical) characterization, and theoretical modelling to sensor device fabrication and its prototype realization. We believe this project will be beneficial to the society of Baltic countries, owing to the advanced technology and novel engineering systems established.

The project will be implemented at the Institute of Solid State Physics, University of Latvia from 01.06.2020 until 31.05.2023. The total cost of the project is 133’805.88 EUR.