Optical Oxygen Nano-sensor

<u>Anna Świderska-Środa¹</u> Krzysztof Gałązka¹, Witold Łojkowski¹, Tadeusz Chudoba¹, Agnieszka Opalińska¹, Krisjanis Smits², Larisa Grigorjeva², Donats Millers², Cristina Leonelli³

> ¹ Institute of High Pressure Physics, Polish Academy of Sciences, Poland ² Institute of Solid State Physics, University of Latvia ³Universita' degli Studi di Modena e Reggio Emilia, Italy e-mail: annas@unipress.waw.pl

Detection of oxygen content in gases is important for health protection and engines operation. Commonly used oxygen sensors exploit the dependence of electric resistance of ZrO_2 ceramics on oxygen content in the analyzed gas. The ceramic needs to be heated up to about 700°C. There are optical sensors where changes of luminescence of organic materials are exploited. For them direct contact with a hot gas has to be avoided. We developed nano-zirconia particles whose photoluminescence strongly depends on oxygen content in nitrogen/oxygen gas mixtures. The nano ZrO_2 :Eu³⁺ particles are produced in a microwave hydrothermal synthesis process. They are doped uniformly with Eu³⁺ ions, and the optimum content is 8%. Their grain size distribution is narrow and for 8 at.% Eu the average size is 19

nm. The material temperature can range from room temperature to 300°C, but the optimal conditions are 100°C. We designed a prototype of the sensor of very simple a construction. An example of the influence of oxygen partial pressure on the luminescence intensity is presented in Fig 1. This work was supported by the MATERAproject Eranet-OXYNANOSEN.

Fig.1 The influence of O_2 partial pressure on the luminescence intensity of ZrO_2 -8 at.% Eu nano-sensor. The plot shows the time dependence of the integral of luminescence in the range 600 - 640 nm excited by a 402 nm LED. Temperature is $100^{\circ}C$.