Supermagnetic states of nanoparticles

Wolfgang Kleemann¹ and Subhankar Bedanta^{1,2}

¹Angewandte Physik, Universität Duisburg-Essen, 47048 Duisburg, Germany

²School of Physics, National Institute of Science Education and Research (NISER), Bhubaneswar-751 005, India e-mail: wolfgang.kleemann@uni-due.de

Ensembles of single domained ferromagnetic (FM) nanoparticles, in which magnetic interparticle interactions are sufficiently weak, show *superparamagnetic* (SPM) behavior.

However, at increased interactions the system eventually shows collective behavior, which overcomes the individual anisotropy properties of the particles. Different collective states of magnetism were first recognized [1] on so-called *discontinuous magnetic metal-insulator multilayers* (DMIM) consisting of focused ion-beam grown $Co_{80}Fe_{20}$ nanoparticles on glassy Al_2O_3 (Fig. 1). At sufficiently small interparticle distances as controlled by the nominal $Co_{80}Fe_{20}$ film thickness, 0.5 nm $< t_n < 1.1$ nm, dipolar interaction enables *superspin*

Fig.1 TEM image of $Co_{80}Fe_{20}$ nanoparticles making up a SSG.

glass (SSG) properties. Similar to atomic spin glasses they reveal chaotic SSG ground states as corroborated by aging properties such as memory and rejuvenation. At increased concen-

tration, but still below physical percolation, 1.1 nm $< t_n < 1.4$ nm, stronger interactions give rise to *superferromagnetic* (SFM) states with domain formation (Fig. 2) similar to that in conventional FM films [2]. At $t_n > 1.4$ nm the *metal-insulator multilayers* (MIM) become continuous owing to physical interparticle percolation. Owing to inherent layer roughness competing ANNNI-type dipolar interactions give rise to modulated magnetization profiles as evidenced by polarized neutron reflectivity and MOKE microscopy [3].

Fig.2 SFM domains in a DMIM $[Co_{80}Fe_{20}(1.3nm)/Al_2O_3(3nm)]_{10}$ imaged by XPEEM [2].

The talk will highlight the most important developments in the field of '*supermagnetism*' [4] comprising *superparamagnetism*, *superspin glass*, *super-* and *percolated ferromagnetism*.

References

- 2. S. Bedanta, T. Eimüller, W. Kleemann, J. Rhensius, F. Stromberg, E. Amaladass, S. Cardoso, P. P. Freitas, *Phys. Rev. Lett.* **98**, 176601 (2007)
- 3. S. Bedanta, E. Kentzinger, A. Scholl, W. Kleemann et al., J. Phys. D: Appl. Phys. 43, 474002 (2010)

4. S. Bedanta, W. Kleemann, J. Phys. D: Appl. Phys. 42, 013001 (2009)

^{1.} W. Kleemann, O. Petracic, Ch. Binek, G. N. Kakazei, Yu. G. Pogorelov, J. B. Sousa, S. Cardoso, P. P. Freitas, *Phys. Rev.* B 63 134423 (2001)