

Comparative First-Principles Calculations of SrTiO₃, BaTiO₃, PbTiO₃ and CaTiO₃ (001), (011) and (111) Surfaces

ROBERTS I. EGLITIS*

Institute of Solid State Physics, University of Latvia, 8 Kengaraga Str., Riga LV 1063, Latvia

I present the results of my ab initio calculations for SrTiO₃, BaTiO₃, PbTiO₃ and $CaTiO_3$ neutral (001), as well as for polar (011) and (111) surfaces using the hybrid description of exchange and correlation. AO and BO₂-terminations for the nonpolar (001) surface and A, BO, and O terminations of the polar (011) surface, as well as B and AO_3 -terminations of the polar (111) surface were calculated. In the case of the neutral AO-terminated (001) surface for SrTiO₃, BaTiO₃, PbTiO₃ and CaTiO₃ perovskites, all upper-layer A atoms relax inward towards the bulk, while all second layer atoms relax outwards. For the BO_2 -terminated (001) surface, in most cases, the largest relaxations are on the second-layer metal atoms. For practically all ABO_3 perovskites, the surface rumpling is considerably larger for the AO-terminated than for the BO₂-terminated (001) surface, but their surface energies always are almost equal. Just opposite, different terminations of the (011) ABO₃ surface lead to very different surface energies for the O-terminated, A-terminated, and BO-terminated (011) surface, respectively. The surface energies for all calculated (111) surfaces are considerably larger than even for (011) surfaces. A considerable increase in the Ti-O chemical bond covalency near the (011) surface as compared to the bulk and to the (111) and (001) surfaces in considered ABO₃ perovskites were predicted.

Keywords SrTiO₃; BaTiO₃; PbTiO₃; CaTiO₃; (001); (011) and (111) surfaces

Introduction

ABO₃ perovskites are important for a variety of high technology applications as a result of their diverse physical properties [1–4]. Thin films of oxide perovskite ferroelectrics are important for many emerging industrial applications including high capacity memory cells, catalysis, optical wave guides, integrated optics applications, substrates for high-T_c cuprate superconductor growth, etc. [5]. For all these applications, the surface structure and the related surface electronic and physical properties are of great importance. Ab initio calculations of SrTiO₃, BaTiO₃, PbTiO₃ and CaTiO₃ surface characteristics are useful to understand processes in which surfaces play a crucial role, such as the chemistry of surface reactions, interface phenomena, and adsorption. In this study, my theoretical calculations dealing with relaxed atomic structures of the SrTiO₃, BaTiO₃, PbTiO₃ and CaTiO₃

Received October 2, 2014; in final form April 14, 2015.

^{*}Corresponding author. E-mail: rieglitis@gmail.com

Color versions of one or more figures in this article can be found online at www.tandfonline.com/gfer.

(001), (011) and (111) surfaces are reported, and general, characteristic trends for all four materials are analyzed.

Due to intensive development and progressive miniaturization of electronic devices, the surface structure as well as the electronic properties of the ABO₃ perovskite thin (001) films have been extensively studied experimentally in recent years. On the (011)surfaces considerably less experimental studies were performed. For example, Enterkin et al. [6] recently reported a solution to the 3×1 SrTiO₃ (110) surface structure obtained through transmission electron diffraction, and confirmed through density functional theory calculations and scanning tunneling microscopy images and simulations [6]. There exist several experimental studies dealing with SrTiO₃ (111) surfaces. For example, Tanaka and Kawai have obtained clean surfaces of reduced SrTiO₃ (111) crystals and observed them by means of scanning tunneling microscopy (STM) combined with reflection high energy diffraction. They have observed two different surface structures. One obtained by annealing at the temperature $\sim 1.180^{\circ}$ C, is assigned to have a SrO₃ outermost layer. The other, obtained by annealing at the temperature~1.220°C, is assigned to have a Ti outermost layer [7]. More than 10 years later Chang et al. [8] also reproducibly obtained an atomically well-defined SrTiO₃ (111) surface by a combined chemical etching and thermal annealing process.

It is obvious, that the high technological importance of SrTiO₃, BaTiO₃, PbTiO₃ and CaTiO₃ perovskites has motivated several *ab initio* studies of their (001) surfaces [9–20]. ABO₃ perovskite (011) surfaces, in general, and SrTiO₃ (011) surfaces, in particular, are considerably less well studied than the corresponding (001) surfaces. Due to the very complex polar structure, only very few ab initio studies of ABO₃ perovskite (011) surfaces (21–27]. ABO₃ perovskite polar (111) surfaces, on the theory side, are even less studied than their (011) surfaces [28–32]. In order to fill this gap, in this study I report comprehensive results dealing with SrTiO₃, BaTiO₃, PbTiO₃ and CaTiO₃ (001), (011) and (111) surface atomic and electronic structures.

Computational Details

First-principles calculations in the framework of density-functional theory (DFT) using the CRYSTAL computer code¹¹¹ have been carried out. Unlike the plane-wave codes employed in many previous studies, CRYSTAL uses localized Gaussian-type basis sets. In calculations by Piskunov *et al.* [33], the basis sets (BS) were developed for SrTiO₃, BaTiO₃ and PbTiO₃. In this paper, for most of calculations, for O atoms, this new BS which differs from previous calculations [10, 11] by inclusion of polarizable d-orbitals on O ions were used. Most of calculations in this paper were performed using the hybrid exchange-correlation B3PW functional involving a mixture of nonlocal Fock exact exchange, local-density approximation (LDA) exchange, and Becke's gradient corrected exchange functional, [34] combined with the nonlocal gradient corrected correlation potential of Perdew and Wang [35–37]. The hybrid B3PW functional for most of ABO₃ perovskite surface studies were selected because it yields excellent results for the SrTiO₃, BaTiO₃, and PbTiO₃ bulk lattice constant and bulk modulus [33].

The reciprocal-space integration was performed by sampling the Brillouin zone, in most cases, with an $8 \times 8 \times 8$ Pack-Monkhorst mesh [38] which provides a balanced summation in direct and reciprocal spaces. To achieve high accuracy, large enough tolerances of 7, 8, 7, 7, and 14 were chosen for the dimensionless Coulomb overlap, Coulomb penetration, exchange overlap, first exchange pseudo-overlap, and second exchange pseudo-overlap parameters, respectively [39]. An advantage of the CRYSTAL code is

that it treats isolated two-dimensional slabs, without any artificial periodicity in the z direction perpendicular to the surface.

The SrTiO₃ (001) surfaces were modeled using symmetric (with respect to the mirror plane) slabs consisting of seven alternating TiO₂ and SrO layers, respectively. (Henceforth, SrTiO₃ will be used for presentation purposes, but everything that is said will apply equally to the BaTiO₃, PbTiO₃ and CaTiO₃ cases). One of these slabs was terminated by SrO planes for the SrTiO₃ crystal and consisted of a supercell containing 17 atoms. The second slab was terminated by TiO₂ planes and consisted of a supercell containing 18 atoms. These slabs are nonstoichiometric, with unit cell formulas Sr₄Ti₃O₁₀ and Sr₃Ti₄O₁₁ for the SrTiO₃ perovskite. These two (SrO and TiO₂) terminations are the only two possible flat and dense (001) surfaces for the SrTiO₃ perovskite lattice structure. The sequence of layers with definition of surface rumpling *s* and the near-surface interplanar separations Δd_{12} and Δd_{23} at the TiO₂-terminated (001) surface of SrTiO₃ is illustrated in Fig. 1.

Unlike the (001) cleavage of SrTiO₃, which naturally gives rise to nonpolar SrO and TiO₂ terminations, a naive cleavage of SrTiO₃ to create (011) surfaces leads to the formation of polar surfaces. For example, the stacking of the SrTiO₃ crystal along the [011] direction consists of alternating planes of O₂ and SrTiO units having nominal charges of -4e and +4e, respectively, assuming O²⁻, Ti⁴⁺, and Sr²⁺ constituents. Thus, a simple cleavage leads to O₂-terminated and SrTiO-terminated (011) surfaces that are *polar* and have nominal surface charges of -2e and +2e per surface cell, respectively. These are shown as the top and bottom surfaces in Fig. 2(a), respectively. If uncompensated, the surface charge would lead to an infinite electrostatic cleavage energy. In reality, the polar surfaces would probably become metallic in order to remain neutral, but in view of the large electronic gaps in the perovskites, such metallic surfaces would presumably be unfavorable. Thus, we may expect rather generally that such polar crystal terminations are relatively unstable in this class of materials.

On the other hand, if the cleavage occurs in such a way as to leave a half layer of O_2 units on each surface, we obtain the nonpolar surface structure shown in Fig. 2(b). Every other surface O atom has been removed, and the remaining O atoms occupy the same sites

Figure 1. TiO₂-terminated SrTiO₃ (001) surface with definitions of surface rumpling *s* and the near-surface interplanar separations Δd_{12} and Δd_{23} .

Figure 2. Side views of slab geometries used to study $SrTiO_3$ (011) surfaces. (a) Stoichiometric eight-layer slab with O₂-terminated and SrTiO-terminated surfaces at top and bottom, respectively. (b) Seven-layer slab with O-terminated surfaces. (c) Seven-layer slab with TiO-terminated surfaces. (d) Seven-layer slab with Sr-terminated surfaces.

as in the bulk structure. We shall refer to this as the "O-terminated" (011) surface, in distinction to the "O₂-terminated" polar surface already discussed in Fig. 2(a). The nonpolar nature of the O-terminated surface can be confirmed by nothing that the 7-layer 15-atom Sr₃Ti₃O₉ slab shown in Fig. 2(b), which has two O-terminated surfaces, is neutral. It is also possible to make nonpolar TiO-terminated and Sr-terminated surfaces, as shown in Figs. 2(c) and 2(d), respectively. This is accomplished by splitting a SrTiO layer during cleavage, instead of splitting an O₂ layer. For the TiO- and Sr-terminated surfaces, we use seven-layer slabs having composition Sr₂Ti₄O₁₀ (16 atoms) and Sr₄Ti₂O₈ (14 atoms) as shown in Figs. 2(c) and 2(d), respectively. These are again neutral, showing that the surfaces are nonpolar (even though they no longer have precisely the bulk SrTiO₃ stoichiometry).

As a next step, the ABO₃ perovskite (111) surfaces will be discussed on the example of BaZrO₃. To simulate BaZrO₃ (111) surfaces, symmetrical slabs consisting of nine alternating Zr and BaO₃ layers were used (see Fig. 3). One of these slabs is terminated by Zr planes and consists of a supercell containing 21 atoms (Zr-BaO₃-Zr-BaO₃-Zr-BaO₃-Zr-BaO₃-Zr) (see Fig. 4a). The second slab is terminated by BaO₃ planes and consists of a supercell containing 24 atoms (BaO₃-Zr-BaO₃-Zr-BaO₃-Zr-BaO₃) (see

Figure 3. Sketch of the cubic BaZrO₃ perovskite structure showing two possible (111) surface terminations: BaO₃ and Zr.

Fig. 4b). These slabs are non-stoichiometric, with unit cell formulas $Ba_4Zr_5O_{12}$ and $Ba_5Zr_4O_{15}$, respectively (see Fig. 3). As it is well known from previous studies dealing with polar CaTiO₃ and SrTiO₃ (111) surfaces [30, 40, 41], a strong electron redistribution takes place for such terminations in order to cancel the polarity, but the Zr or BaO_3 -

Figure 4. Sketch of the side views of slab geometries used to study $BaZrO_3$ (111) surfaces. (a) Nonstoichiometric nine-layer slab with Zr-terminated surfaces. (b) Non-stoichiometric nine-layer slab with BaO_3 -terminated surfaces.

terminated BaZrO₃ (111) surface keeps its insulating character, and such calculations are feasible. Of course, it is not possible to perform calculations for asymmetric slabs with different terminations, for example, Zr-BaO₃-Zr-BaO₃-Zr-BaO₃-Zr-BaO₃, since this would lead to a large dipole moment for an asymmetric slab.

In order to calculate ABO₃ perovskite, for example, the SrZrO₃ (001) surface energy, I started with the cleavage energy for unrelaxed SrO- and ZrO₂-terminated (001) surfaces. Surfaces with both terminations simultaneously arise under (001) cleavage of the crystal, and I adopt the convention that the cleavage energy is equally distributed between the created surfaces. In my calculations, the nine-layer SrO-terminated (001) slab with 22 atoms and the ZrO₂-terminated one with 23 atoms represent, together, nine bulk unit cells (45 atoms) so that

$$E_{surf}^{unr}(\Omega) = \frac{1}{4} \left[E_{slab}^{unr}(SrO) + E_{slab}^{unr}(ZrO_2) - 9E_{bulk} \right],\tag{1}$$

where Ω denotes SrO or ZrO₂, $E_{\text{slab}}^{\text{unr}}(\Omega)$ are the unrelaxed energies of the SrO- or ZrO₂terminated (001) slabs, E_{bulk} is the energy per bulk unit cell, and the factor of $\frac{1}{4}$ comes from the fact that I create four surfaces upon the crystal cleavage procedure. Next, I can calculate the relaxation energies for each of SrO and ZrO₂ terminations, when both sides of the slabs relax, according to

$$E_{rel}(\Omega) = \frac{1}{2} \left[E_{slab}^{rel}(\Omega) - E_{slab}^{unr}(\Omega) \right], \tag{2}$$

where $E_{\text{slab}}^{\text{rel}}(\Omega)$ is the slab energy after relaxation (and again $\Omega = \text{SrO or } \text{ZrO}_2$). The surface energy is then defined as a sum of the cleavage and relaxation energies,

$$E_{surf}(\Omega) = E_{surf}^{unr}(\Omega) + E_{rel}(\Omega).$$
(3)

In order to calculate the $SrZrO_3$ (011) surface energies for the ZrO- and Sr-terminated surfaces, I consider the cleavage of eight bulk unit cells (40 atoms) to result in the ZrO- and Sr-terminated slabs, containing 21 and 19 atoms, respectively. I again divide the cleavage energy equally between these two surfaces and obtain

$$E_{surf}^{unr}(\Omega) = \frac{1}{4} \left[E_{slab}^{unr}(Sr) + E_{slab}^{unr}(ZrO) - 8E_{bulk} \right],\tag{4}$$

where Ω denotes Sr or ZrO, $E_{\text{slab}}^{\text{unr}}(\Omega)$ is the energy of the unrelaxed Sr- or ZrO-terminated (011) slab, and E_{bulk} is the SrZrO₃ energy per bulk unit cell.

Finally, when I cleave the $SrZrO_3$ crystal in another way, I obtain two identical O-terminated (011) surface slabs containing 20 atoms each. This allows for me to simplify the calculations since the unit cell of the nine-plane O-terminated (011) slab contains four bulk unit cells. Therefore, the relevant surface energy is

$$E_{surf}(O) = \frac{1}{2} \left[E_{slab}^{rel}(O) - 4E_{bulk} \right],$$
(5)

where $E_{\text{surf}}(O)$ and $E_{\text{slab}}^{\text{rel}}(O)$ are the surface energy and the relaxed slab total energy for the O-terminated (011) surface. The ABO₃ perovskite polar (111) surface energy calculations, using as an example the BaZrO₃ crystal, were discussed in Ref. 31.

listed for comparison					
Crystal	B3PW	Experimen			
SrTiO ₃	3.904	3.89 [42]			
BaTiO ₃	4.008	4.00 [42]			
PbTiO ₃	3.936	3.97 [43]			
CaTiO ₃	3.851	3.895 [44]			

 Table 1

 The calculated bulk lattice constants (in Å) for the $SrTiO_3$, $BaTiO_3$, $PbTiO_3$ and $CaTiO_3$

 bulk using the hybrid B3PW method. The experimental bulk lattice constants [42–44] are

Main Calculation Results

As a first step of my calculations, I calculated the $SrTiO_3$, $BaTiO_3$, $PbTiO_3$ and $CaTiO_3$ bulk lattice constants using the hybrid B3PW functional (see Table 1). The experimentally measured $SrTiO_3$, $BaTiO_3$, $PbTiO_3$ and $CaTiO_3$ bulk lattice constants [42–44] are listed for comparison purposes in Table 1. The B3PW calculated bulk lattice constants for $SrTiO_3$ and $BaTiO_3$ crystals are almost in perfect agreement with experiments [42], but my calculation results for $PbTiO_3$ and $CaTiO_3$ are slightly smaller than the experimental values [43, 44].

My calculation results for the surface atomic displacements for SrO, BaO, PbO, CaO and TiO₂-terminated SrTiO₃, BaTiO₃, PbTiO₃ and CaTiO₃ perovskite upper two (001) surface layers are listed in Tables 2 and 3. The relaxation of surface metal atoms for SrTiO₃, BaTiO₃, PbTiO₃ and CaTiO₃ perovskite upper two surface layers for both (001) terminations – AO and TiO₂ are much larger than that of oxygen ions what leads to a leads to a considerable rumpling of the outermost plane (see Tables 2, 3 and 4). For the AO-terminated SrTiO₃, BaTiO₃, PbTiO₃ and CaTiO₃ and CaTiO₃ (001) surface, the atoms of the first surface layer relax inwards, whereas the all atoms of the oxygen atom located on the first layer of SrO-terminated SrTiO₃ (001) surface (see Table 2).

The CaO-terminated CaTiO₃ (001) surface first layer Ca atoms exhibit the strongest relaxation between all AO and TiO₂-terminated ABO₃ perovskite (001) surface atoms.

Calculated atomic relaxation (in percent of bulk lattice constant) for SrO, BaO, PbO and CaO-terminated SrTiO₃, BaTiO₃, PbTiO₃ and CaTiO₃ (001) surfaces, respectively. Positive (negative) values refer to displacements outward from (inward to) the surface

Table 2

SrO-termin. SrTiO ₃ (001) surf.			Ba(BT)	D-term. O (001)	Pb PT	O-term O (001)	CaO-term CTO (001)	
Layer	Ion	B3PW	Ion	B3PW	Ion	B3PW	Ion	B3PW
1	Sr	-4.84	Ba	-1.99	Pb	-3.82	Ca	-8.31
	0	0.84	0	-0.63	0	-0.31	0	-0.42
2	Ti	1.75	Ti	1.74	Ti	3.07	Ti	1.12
	0	0.77	0	1.40	0	2.30	0	0.01

R. I. Eglitis

Table 3

	values	refer to disp	placemen	ts outward f	from (inw	ard to) the	surface	-
TiO ₂ -termin. SrTiO ₃ (001) surf.		TiO ₂ -term. BTO (001)		TiO ₂ -term PTO (001)		TiO ₂ -term CTO (001)		
Layer	Ion	B3PW	Ion	B3PW	Ion	B3PW	Ion	B3PW
1	Ti	-2.25	Ti	-3.08	Ti	-2.81	Ti	-1.71
	0	-0.13	0	-0.35	0	0.31	0	-0.10
2	Sr	3.55	Ba	2.51	Pb	5.32	Ca	2.75
	Ο	0.57	Ο	0.38	0	1.28	0	1.05

Calculated atomic relaxation (in percent of bulk lattice constant) for TiO₂-terminated SrTiO₃, BaTiO₃, PbTiO₃ and CaTiO₃ (001) surfaces, respectively. Positive (negative) values refer to displacements outward from (inward to) the surface

The Ca atom inward relaxation magnitude is 8.31% of the theoretically by B3PW calculated CaTiO₃ lattice constant.

In order to compare the calculated surface structures with experimental results, the surface rumpling *s* (the relative displacement of oxygen with respect to the metal atom in the surface layer) and the changes in interlayer distances Δd_{12} and Δd_{23} (1, 2 and 3 are the numbers of near-surface layers) are presented in Table 4. According to my B3PW calculations, the amplitude of surface rumpling of SrO-terminated SrTiO₃ (001) surface is predicted to be much larger than that of TiO₂-terminated SrTiO₃ surface, whereas the rumpling of BaTiO₃ TiO₂-terminated (001) surface is predicted to exceed by a factor of two that for BaO-terminated BaTiO₃ (001) surface. In contrast, the PbTiO₃ perovskite demonstrates practically equal surface rumpling for both PbO and TiO₂ (001) surface terminations. From Table 4, one can see that all calculated surfaces show the reduction of the interlayer distance d_{12} and expansion of d_{23} . The only exception is PbO-terminated PbTiO₃ (001) surface, which shows the expansion between the first and second surface layer.

My calculated surface energy for the SrO-terminated $SrTiO_3$ (001) surface by means of the hybrid B3PW method is 1.15 eV, which is slightly smaller than the

Table 4Calculated and experimental surface rumpling s and relative displacements of the three
near-surface planes for the AO and TiO2-terminated SrTiO3, BaTiO3, PbTiO3 and
CaTiO3 (001) surfaces Δd_{ii} (in percent of the lattice constant)

		AC	D-terminate	d	TiO	TiO ₂ -terminated			
Crystal	Method	S	Δd_{12}	Δd_{23}	S	Δd_{12}	Δd_{23}		
SrTiO ₃	B3PW LEED [45] RHEED [46]	5.66 4.1 ± 2 4.1	$-6.58 -5 \pm 1$ 2.6	1.75 2 ± 1 1.3	2.12 2.1 ± 2 2.6	-5.79 1 ± 1 1.8	$3.55 -1 \pm 1$ 1.3		
BaTiO ₃ PbTiO ₃ CaTiO ₃	B3PW B3PW B3PW	1.37 3.51 7.89	-3.74 6.89 -9.43	1.74 3.07 1.12	2.73 3.12 1.61	-5.59 -8.13 -4.46	2.51 5.32 2.75		

Crystal (001) (011)	(111)
(001)	(111)
Terminat. AO BO_2 BO A O AO_3	B B
SrTiO ₃ 1.15 1.23 3.06 2.66 2.04 6.30	4.99
BaTiO ₃ 1.19 1.07 2.04 3.24 1.72 8.40	7.28
PbTiO ₃ 0.83 0.74 1.36 2.03 1.72	
CaTiO ₃ 0.94 1.13 3.13 1.91 1.86 5.86	4.18

 Table 5

 My calculated surface energies (in eV per surface cell) for SrTiO₃, BaTiO₃, PbTiO₃ and CaTiO₃ (001), (011) and (111) surfaces with different terminations

computed surface energy of 1.23 eV for the TiO₂-terminated SrTiO₃ (001) surface (see Table 5). Just opposite to the $SrTiO_3$ (001) surface, the different terminations of the (011) surface lead to large differences in the surface energies. For the $SrTiO_3$ (011) surface, the lowest energy, according to my B3PW calculations is 2.04 eV for the O-terminated surface. The calculated surface energy of 3.06 eV for the TiO-terminated SrTiO₃ (011) surface is larger than that of the Sr-terminated (011) surface (2.66 eV). The B3LYP calculated surface energy for the Ti-terminated $SrTiO_3$ (111) surface (4.99 eV) is smaller, than the surface energy for SrO₃-terminated SrTiO₃ (111) surface (6.30 eV). My calculated surface energies of the relaxed $BaTiO_3$ (001) and (011) surfaces by means of the hybrid B3PW method are presented in Table 5. The calculated energies for BaO and TiO₂-terminated BaTiO₃ (001) surfaces (1.19 eV and 1.07 eV, respectively) demonstrate only a small difference. According to my calculations performed by the hybrid B3PW method, unlike the BaTiO₃ (001) surface, different terminations of the BaTiO₃ (011) surface show great differences in the surface energies. The lowest surface energy has the O-terminated $BaTiO_3$ (011) surface (1.72 eV). The Ba-terminated $BaTiO_3$ (011) surface shows much higher surface energy of 3.24 eV, while the $BaTiO_3$ TiO-terminated (011) surface energy is 2.04 eV. Similarly as for the SrTiO₃ perovskite, also for $BaTiO_3$, the (111) surface energies are considerably larger than the (001), and even (011) surface energies. My B3LYP calculated surface energy for Ti-terminated BaTiO₃ (111) surface is equal to 7.28 eV, while the surface energy for BaO₃-terminated BaTiO₃ (111) surface is equal to 8.40 eV.

Table 6 for the SrTiO₃, BaTiO₃, PbTiO₃ and CaTiO₃ (011) surfaces is similar to Table 3 for the corresponding (001) surfaces, whereas Table 7 complements these data by the predicted (011) surface rumpling and the relative displacements of the two top layers. For the TiO-terminated (011) surface, the rumpling for all four SrTiO₃, BaTiO₃, PbTiO₃ and CaTiO₃ surfaces is qualitatively equal and really huge, $\approx 10-12$ % of the bulk lattice constant. For all four calculated ABO₃ perovskites, this arise due to a combination of a strong O ion outward displacement by (2-5%) and large Ti ion inward displacement by approximately (7-8%). This calculated surface rumpling is considerably larger than that found for the SrTiO₃, BaTiO₃, PbTiO₃ and CaTiO₃ (001) surface. The reduction of relative distances between the first and second layer for TiO-terminated (011) surfaces for all four my calculated ABO₃ perovskites (see Table 7) are in the range between (4%) and (7%). This reduction of the interlayer distance between the first and the second layer is considerably larger than the reduction of the interlayer distance between the second and the third layer. As we can wee from the Table 7, the TiO-terminated CaTiO₃ (011) surface, in contrast to the SrTiO₃, BaTiO₃ and PbTiO₃ perovskites, shows expansion between the second and third layers by (2.31%) of the bulk lattice constant.

SrTiO ₃			BaTiO ₃		PbTiO ₃			CaTiO ₃				
Layer	Ion	Δz	Δy	Ion	Δz	Δy	Ion	Δz	Δy	Ion	Δz	Δy
	TiO-t	erminated	1		TiO-ter	m.		TiO-tern	1.		TiO-term	ı.
	(01	1) surface	e		(011)	surf.		(011) st	ırf.		(011) su	rf.
1	Ti	-7.69		Ti	-7.86		Ti	-8.13		Ti	-7.14	
	0	3.59		0	2.61		0	3.30		0	4.67	_
2	0	-0.51		0	-1.02		0	-0.41		0	-0.44	_
3	Sr	-2.10		Ba	-0.88		Pb	-2.54		Ca	-2.75	_
	0	-2.56					0	-4.07		0	-3.79	_
	Ti	0.16					Ti	0.30		Ti	-0.78	_
	Sr-te	rminated			Ba-teri	n.		Pb-term			Ca-term	
	(01	1) surface	e		(011)	surf.		(011) st	ırf.		(011) su	rf.
1	Sr	-12.81		Ba	-8.67		Pb	-11.94	_	Ca	-16.05	_
2	0	1.02		0	0.80		0	-0.61	_	0	1.35	_
3	Ti	-0.04		Ti	0.16		Ti	1.78		Ti	-0.37	_
	0	-1.08		0	-0.43		0	1.67		0	-1.71	—
	Sr	0.26					Pb	1.52	_	Ca	-0.93	_
	O-te	rminated			O-tern	n.		O-term.			O-term.	
	(01	1) surface	e		(011) s	surf.		(011) st	ırf.		(011) su	rf.
1	0	-6.61	-0.14	0	-5.40	-1.67	0	-7.37	-0.07	0	-6.10	-2.16
2	Ti	-1.02	-4.35	Ti	-0.15	-6.38	Ti	0.20	-2.54	Ti	-0.26	-4.70
	Sr	-1.18	0.85	Ba	1.54	-1.27	Pb	0.18	-7.50	Ca	-2.10	-0.27
	0	1.79	6.40	0	1.95	2.97	0	0.51	2.19	0	3.43	8.05
3	0	-0.79	2.10	0	0.90	4.49	0	-0.41	3.30	0	-0.55	1.90

On the Sr, Ba, Pb and Ca-terminated SrTiO₃, BaTiO₃, PbTiO₃ and CaTiO₃ (011) surfaces, the upper layer Sr, Ba, Pb and Ca atoms move very strongly inwards by 12.81, 8.67, 11.94 and 16.05% of the lattice constant a_0 , respectively (see Table 6). These Sr, Ba, Pb and Ca atomic displacement magnitudes are the largest atomic displacement

Table 7Surface rumpling s and relative displacements Δd_{ij} (in percent of the bulk lattice constant)for three near-surface planes of the TiO and O-terminated SrTiO₃, BaTiO₃, PbTiO₃ and
CaTiO₃ (011) surface

	TiO-te	rminated (011)	O-terminated (011) surface			
Crystal	S	Δd_{12}	Δd_{23}	Δd_{12}	Δd_{23}	
SrTiO ₃ BaTiO ₃ PbTiO ₃ CaTiO ₃	11.28 10.47 11.43 11.81	-7.18 -6.84 -4.83 -6.70	-0.67 -1.02 -0.71 2.31	-5.59 -5.25 -7.57 -5.84	-0.23 -1.05 -5.84 0.29	

magnitudes between all in the Table 6 calculated $SrTiO_3$, $BaTiO_3$, $PbTiO_3$ and $CaTiO_3$ (011) surface atoms. The second layer O atoms for the Sr, Ba and Ca-terminated $SrTiO_3$, $BaTiO_3$ and $CaTiO_3$ (011) surfaces relax outwards by 1.02, 0.80 and 1.35% of a_0 , respectively, whereas the Pb-terminated $PbTiO_3$ (011) surface second layer O atom, in contrast, relax inwards by 0.61% of a_0 (see Table 6). For the O-terminated $SrTiO_3$, $BaTiO_3$, $CaTiO_3$ and $PbTiO_3$ (011) surface (see Table 6), the upper layer O atom displacement directions along the z- and y-axes are the same for all four calculated perovskites. Nevertheless, the displacement magnitudes of the upper layer O atom are quite different for different perovskites. As we can see from Table 6, the atomic displacement magnitudes in the third plane from the surface for all three terminations of the $SrTiO_3$, $BaTiO_3$, $PbTiO_3$ and $CaTiO_3$ (011) surfaces are still rather large.

According to the results of my calculations for $SrTiO_3$ (111) surfaces, the upper layer Ti atom for Ti-terminated $SrTiO_3$ (111) surface strongly (by 3.58% of the bulk lattice constant a_0) relaxes inwards (see Table 8). The second layer Sr atom moves inwards by huge magnitude of 11.24% of a_0 , while the second layer O atom relaxes outwards by 1.53% of a_0 . Outward displacement of the third layer Ti atom is rather weak, less than 1% of a_0 . For the SrO_3 -terminated $SrTiO_3$ (111) surface the upper layer metal atom moves outwards by 1.33% of a_0 , but the upper layer O atom is displaced very slightly inwards by 0.03% of a_0 . The second layer Ti atom outward displacement (1.81% of a_0) is larger than the upper layer Sr atom outward relaxation. Both third layer Sr and O atoms relaxes inwards by a very small magnitude (0.03% of a_0 and 0.26% of a_0), respectively (see Table 8). The calculated surface relaxation energy for Ti-terminated SrTiO_3 (111) surface (-1.66 eV) is almost five times larger, than the surface relaxation energy for SrO_3-terminated SrTiO_3 (111) surface (-0.35 eV).

Table 8Calculated relaxation by means of the B3LYP method of Ti and SrO₃-terminated SrTiO3(111), Ti and BaO₃-terminated BaTiO₃ and Ti and CaO₃-terminated CaTiO₃ (111)surface upper three layer atoms (as a percentage of the bulk crystal lattice constant $a_0 = 3.914$ Å, $a_0 = 4.021$ Å and $a_0 = 3.851$ Å, respectively)

SrTiO ₃ (111) surface			BaTiO ₃ ((111) surface	CaTiO ₃ (CaTiO ₃ (111) surface		
Layer	Ion	Δz	Ion	Δz	Ion	Δz		
2	Fi-terminat	ted	Ti-te	rm. BTO	Ti-te	rm. CTO		
Sr	$iO_3(111)$	surface	(11	1) surface	(11	1) surface		
1	Ti	-3.58	Ti	-11.19	Ti	-6.23		
2	Sr	-11.24	Ba	-6.22	Ca	-14.02		
	0	1.53	Ο	+2.74	Ο	1.30		
3	Ti	0.26	Ti	-0.25	Ti	-0.26		
Sr	SrO ₃ -terminated			O ₃ -term.	CaC	CaO ₃ -term.		
Sr	TiO ₃ (111)	surface	BTO	(111) surf.	СТО	CTO (111) surf.		
1	Sr	1.33	Ba	-1.24	Ca	-0.52		
	0	-0.03	Ο	-3.98	0	-0.81		
2	Ti	1.81	Ti	+2.49	Ti	+2.13		
3	Sr	-0.03	Ba	+1.49	Ca	+2.60		
	0	-0.26	0	-0.25	0	-0.07		

R. I. Eglitis

According to the results of the calculations, the upper layer Ti atom for Ti-terminated BaTiO₃ (111) surface strongly (by 11.19% of the bulk lattice constant a_0) relaxes inwards (see Table 8). The second layer Ba atom also rather strongly relaxes inwards (by 6.22% of a_0), while the second layer O atom relaxes outwards by 2.74% of a_0 . Inward relaxation of the third layer Ti atom is rather weak, only 0.25% of a_0 . For BaO₃-terminated BaTiO₃ (111) surface the upper layer metal atom relaxes inwards by 1.24% of a_0 , but the upper layer O atom relaxes inwards even more strongly by 3.98% of a_0 (see Table 8). The second layer Ti atom outward relaxation (2.49% of a_0) is larger than upper layer metal - Ba atom relaxation. Third layer Ba atom rather strongly relax outwards, but third layer O atom relax inwards by a very small magnitude (0.25% of a_0).

Conclusions

According to all my calculations, on the AO-terminated (001) surface, all upper-layer A atoms relax inward for SrTiO₃, BaTiO₃, PbTiO₃ and CaTiO₃ perovskites by magnitude of at least 2% of the lattice constant a_0 , while all second layer atoms relax outwards. For the TiO₂-terminated SrTiO₃, BaTiO₃, PbTiO₃ and CaTiO₃ (001) surface, in most cases, the largest relaxations are on the second-layer metal atoms. For almost all SrTiO₃, BaTiO₃, PbTiO₃ and CaTiO₃, PbTiO₃ and CaTiO₃, PbTiO₃, BaTiO₃, PbTiO₃ and CaTiO₃ perovskites, the (001) surface rumpling is much larger for the AO-terminated than for the TiO₂-terminated (001) surface, but their surface energies always are quite similar.

In contrast, according to my calculations, different terminations of the SrTiO₃, BaTiO₃, PbTiO₃ and CaTiO₃ (011) surface lead to very different surface energies for the O-terminated, A-terminated and TiO-terminated SrTiO₃, BaTiO₃, PbTiO₃ and CaTiO₃ (011) surface, respectively.

According to my calculations, the most energetically favourable with the lowest surface energy, always are the AO and TiO_2 -terminated $SrTiO_3$, $BaTiO_3$, $PbTiO_3$ and $CaTiO_3$ perovskite (001) surfaces. The A, TiO and O-terminated $SrTiO_3$, $BaTiO_3$, $PbTiO_3$ and $CaTiO_3$ (011) surfaces are always, according to my calculations, less energetically favourable than the (001) surfaces. Finally, the $SrTiO_3$, $BaTiO_3$ and $CaTiO_3$ (111) surfaces are always energetically most unfavourable and unstable surfaces according to all my performed calculations.

The main reason for stability difference between (001), (011) and (111) surfaces stem from peculiarities of their atomic and electronic structure. Namely, the (001) cleavage of $SrTiO_3$, $BaTiO_3$, $PbTiO_3$ and $CaTiO_3$ gives rise to nonpolar (neutral) AO and TiO_2 (001) terminations, which are stable and have the lowest surface energy. A naive cleavage of $SrTiO_3$, $BaTiO_3$, $PbTiO_3$ and $CaTiO_3$ to create (011) or (111) surfaces leads to the formation of polar $SrTiO_3$, $BaTiO_3$, $PbTiO_3$ and $CaTiO_3$ (011) or (111) surfaces. The polar $SrTiO_3$, $BaTiO_3$, $PbTiO_3$ and $CaTiO_3$ (011) and (111) surfaces consists of alternating charged planes, and thereby they are energetically less stable than neutral (001) surfaces. Of course, the surface energies of polar $SrTiO_3$, $BaTiO_3$, $PbTiO_3$ and $CaTiO_3$ (011) and (111) surfaces are much larger than for the neutral (001) surfaces, in good agreement with the results of current *ab initio* calculations.

The current *ab initio* calculations indicate a considerable increase in the Ti-O chemical bond covalency near the TiO and O-terminated $SrTiO_3$, $BaTiO_3$, $PbTiO_3$ and $CaTiO_3$ (011) surfaces as well as the TiO₂-terminated (001) surface. The Ti-O chemical bond covalency at the TiO-terminated $SrTiO_3$, $BaTiO_3$, $PbTiO_3$ and $CaTiO_3$ (011) surface (0.130*e*, 0.130*e*, 0.132*e* and 0.128*e*, respectively) is much larger than that for the TiO₂terminated (001) surface (0.118*e*, 0.126*e*, 0.114*e*, 0.114*e*, respectively) or in bulk (0.088*e*, 0.098*e*, 0.098*e*, 0.084*e*, respectively). The Ti-O chemical bond populations on the TiO-terminated SrTiO₃, BaTiO₃, PbTiO₃ and CaTiO₃ (011) surfaces are much larger in the direction perpendicular to the surface than in the plane (0.188*e*, 0.198*e*, 0.196*e*, 0.186*e* vs 0.130*e*, 0.130*e*, 0.132*e*, 0.128*e*, respectively). Performed *ab initio* calculations indicate also a considerable increase of Ti-O chemical bond covalency near the SrTiO₃, BaTiO₃, PbTiO₃ and CaTiO₃ (111) surface relative to the SrTiO₃, BaTiO₃, PbTiO₃ and CaTiO₃ bulk. This should have an impact on the electronic structure of surface defects (e. g. *F* centers), as well as on the adsorption and surface diffusion of atoms and small molecules relevant for catalysis.

Funding

This work was supported by the Latvian Council of Science Grant No. 374/2012 and ESF Grant No. 2013/0046/1DP/1.1.1.2.0/APIA/VIAA/021.

References

- 1. J. F. Scott, Ferroelectric Memories. Springer: Berlin; (2000).
- M. Dawber, K. M. Rabe, and J. F. Scott, Physics of thin-film ferroelectric oxides. *Rev. Mod. Phys.* 77, 1083–1130 (2005).
- 3. R. E. Cohen, Origin of ferroelectricity in perovskite oxides. Nature. 358, 136-138 (1992).
- W. Jia, V. S. Vikhnin, H. Liu, S. Kapphan, R. I. Eglitis, and D. Usvyat, Critical effects in optical response due to charge transfer vibronic excitons and their structure in perovskite-like systems. *Journal of Luminescence*. 83–84, 109–113 (1999).
- O. Auciello, J. F. Scott, and R. Ramesh, The Physics of Ferroelectric Memories. *Phys. Today*. 51, 22–27 (1998).
- J. A. Enterkin, A. K. Subramanian, B. C. Russel, M. R. Castell, K. R. Poeppelmeier, and L. D. Marks, A homologous series of structures on the surface of SrTiO₃ (110). *Nature Materials*. 9, 245–248 (2010).
- H. Tanaka, and T. Kawai, Surface structure of reduced SrTiO₃ (111) observed by scanning tunnelling microscopy. *Surf. Sci.* 365, 437–442 (1996).
- J. Chang, Y. S. Park, and S. K. Kim, Atomically flat single-terminated SrTiO3 (111) surface. *Appl. Phys. Lett.* 92, 152910 (2008).
- E. Blokhin, R. A. Evarestov, D. Gryaznov, E. A. Kotomin, and J. Maier, Theoretical modelling of antiferrodistortive phase transition for SrTiO₃ ultrathin films. *Phys. Rev. B.* 88, 241407(R) (2013).
- E. Heifets, R. I. Eglitis, E. A. Kotomin, J. Maier, and G. Borstel, *Ab initio* modeling of surface structure for SrTiO₃ perovskite crystals. *Phys. Rev. B.* 64, 235417 (2001).
- E. A. Kotomin, R. I. Eglitis, J. Maier, and E. Heifets, Calculations of the atomic and electronic structure for SrTiO₃ perovskite thin films. *Thin Solid Films*. 400, 76–80 (2001).
- S. Piskunov, E. A. Kotomin, E. Heifets, J. Maier, R. I. Eglitis, and G. Borstel, Hybrid DFT calculations of the atomic and electronic structure for ABO3 perovskite (001) surfaces. *Surf. Sci.* 575, 75–88 (2005).
- R. I. Eglitis, G. Borstel, E. Heifets, S. Piskunov, and E. Kotomin, *Ab initio* calculations of the BaTiO₃ (100) and (110) surfaces. *Journal of Electroceramics*. 16, 289–292 (2006).
- N. Erdman, K. R. Poeppelmeier, M. Asta, O. Warschkow, D. E. Ellis, and L. D. Marks, The structure and chemistry of the TiO₂-rich surface of SrTiO₃ (001). *Nature*. 419, 55–57 (2002).
- 15. A. Hofer, M. Fechner, K. Duncker, M. Holzer, I. Mertig, and W. Widdra, Persistence of surface domain structures for a bulk ferroelectric above T-C. *Phys. Rev. Lett.* **108**, 087602 (2012).
- R. I. Eglitis, and D. Vanderbilt, First-principles calculations of atomic and electronic structure of SrTiO₃ (001) and (011) surfaces. *Phys. Rev. B.* 77, 195408 (2008).

- 17. C. Bungaro, and K. M. Rabe, Coexistence of antiferrodistortive and ferroelectric distortions at the PbTiO₃ (001) surface. *Phys. Rev. B.* **71**, 035420 (2005).
- R. I. Eglitis, and D. Vanderbilt, *Ab initio* calculations of the atomic and electronic structure of CaTiO₃ (001) and (011) surfaces. *Phys. Rev. B.* 78, 155420 (2008).
- A. M. Kolpak, D. Li, R. Shao, A. M. Rappe, and D. A. Bonnell, Evolution of the structure and thermodynamic stability of the BaTiO₃ (001) surface. *Phys. Rev. Lett.* **101**, 036102 (2008).
- R. I. Eglitis, and D. Vanderbilt, *Ab initio* calculations of BaTiO₃ and PbTiO₃ (001) and (011) surface structures. *Phys. Rev. B*. **76**, 155439 (2007).
- F. Bottin, F. Finocchi, C. Noguera, Stability and electronic structure of the (1 × 1) SrTiO₃ (110) polar surfaces by first-principles calculations. *Phys. Rev. B.* 68, 035418 (2003).
- 22. C. Noguera, Polar oxide surfaces. J. Phys.: Condens. Matter. 12, R367 (2000).
- F. Bottin, F. Finocchi, and C. Noguera, *Ab initio* study of the polar SrTiO₃ (110) (1 × 1) surfaces. *Surf. Sci.* 532–535, 468–471 (2003).
- R. I. Eglitis, First-principles calculations of BaZrO₃ (001) and (011) surfaces. J. Phys.: Condens. Matter. 19, 356004 (2007).
- H. Chen, Y. Xie, G. H. Zhang, and H. T. Yu, A first-principles investigation of the stabilities and electronic properties of SrZrO₃ (110) (1 × 1) polar terminations. *J. Phys.: Condens. Matter.* 26, 395002 (2014).
- R. I. Eglitis, and M. Rohlfing, First-principles calculations of the atomic and electronic structure of SrZrO₃ and PbZrO₃ (001) and (011) surfaces. *J. Phys.: Condens. Matter.* 22, 415901 (2010).
- J. M. Zhang, J. Cui, K. W. Hu, V. Ji, and Z. Y. Man, *Ab initio* modelling of CaTiO₃ (110) polar surfaces. *Phys. Rev. B.* **76**, 115426 (2007).
- N. Sivadas, H. Dixit, V. R. Cooper, and D. Xiao, Thickness-dependent carrier density at the surface of SrTiO₃ (111) slabs. *Phys. Rev. B.* 89, 075303 (2014).
- R. I. Eglitis, Ab initio calculations of BaTiO₃ (111) surfaces. *Phase Transitions*. 86, 1115–1120 (2013).
- W. Liu, C. Wang, J. Cui, and Z. Y. Man, Ab initio calculations of the CaTiO3 (111) polar surfaces. *Solid State Commun.* 149, 1871–1876 (2009).
- R. I. Eglitis, *Ab initio* calculations of the atomic and electronic structure of BaZrO₃ (111) surfaces. *Solid State Ionics*. 230, 43–47 (2013).
- R. I. Eglitis, First-principles calculations of the atomic and electronic structure of CaTiO₃ (111) surfaces. *Ferroelectrics.* 424, 1–6 (2011).
- S. Piskunov, E. Heifets, R. I. Eglitis, and G. Borstel, Bulk properties of SrTiO₃, BaTiO₃ and PbTiO₃ perovskites: an *ab initio* HF/DFT study. *Comput. Mater. Sci.* 29, 165–180 (2004).
- A. D. Becke, Density-functional thermochemistry. 3. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).
- J. P. Perdew, and Y. Wang, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. *Phys. Rev. B.* 33, 8800(R)-8802(R) (1986).
- J. P. Perdew, and Y. Wang, Erratum: Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. *Phys. Rev. B.* 40, 3399(E)–3399(E) (1989).
- J. P. Perdew, and Y. Wang, Accurate and simple analytic representation of the electron-gas correlation energy. *Phys. Rev. B*. 45, 13244–13249 (1992).
- H. J. Monkhorst, and J. D. Pack, Special points for Brillouin-zone integrations. *Phys. Rev. B*. 13, 5188–5192 (1976).
- V. R. Saunders, R. Dovesi, C. Roetti, M. Causa, N. M. Harrison, R. Orlando, and Zicovich-Wilson C. M., CRYSTAL-2006 User Manual. University of Torino. Torino, Italy; (2006).
- A. Pojani, F. Finocchi, and C. Noguera, Polarity on the SrTiO₃ (111) and (110) surfaces. *Surf. Sci.* 442, 179–198 (1999).
- A. Pojani, F. Finocchi, and C. Noguera, A theoretical study of the unreconstructed polar (111) face of SrTiO₃. *Appl. Surf. Sci.* 142, 177–181 (1999).

- 42. K. H. Hellwege, and A. M. Hellwege, Ferroelectrics and Related Substances. *Landolt-Bornstein, New Series Vol.* **3**. Springer: Berlin; (1969).
- G. Shirane, R. Pepinsky, and B. C. Frazer, X-ray and Neutron Diffraction study of Ferroelectric PbTiO₃. Acta Cryst. 9, 131–140 (1956).
- B. J. Kennedy, C. J. Howard, and B. C. Chakoumakos, Phase transitions in perovskite at elevated temperatures –a powder neutron diffraction study. *J. Phys.: Condens. Matter.* 11, 1479– 1488 (1999).
- 45. N. Bickel, G. Schmidt, K. Heinz, and Müller K., Ferroelectric relaxation of the SrTiO₃ (100) surface. *Phys. Rev. Lett.* **62**, 2009–2012 (1989).
- T. Hikita, T. Hanada, M. Kudo, and M. Kawai, Structure and electronic state of the TiO₂ and SrO terminated SrTiO₃ (100) surfaces. *Surf. Sci.* 287, 377–381 (1993).