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• A new one-step plasma electrolytic oxi-
dation process of strontium aluminate
coating on aluminum alloy is demon-
strated.

• It was applied for production of an effi-
cient long-afterglow phosphor SrAl2O4:
Eu2+,Dy3+ on aluminium alloy Al6082.

• The obtained coating exhibits optical
properties similar to commercial
SrAl2O4: Eu2+, Dy3+ phosphor.

• The formationof strontiumaluminate oc-
curs during the local high-temperature
plasma discharges.

• This method provides an engineering so-
lution for metal surface coatings having
both protective and functional properties.
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This study presents a novel approach to produce phosphorescent coatings on metal surfaces.
Strontium aluminates are themost popularmodern phosphorescentmaterials exhibiting long afterglow at room
temperature and a broad spectral distribution of luminescence in the visible range. However, despite a large
amount of research done, methods for synthesis of such materials remain relatively energy inefficient and
environmentally unfriendly.
A long-afterglow luminescent coating containing SrAl2O4:Eu2+, Dy3+ is prepared by the plasma electrolytic
oxidation on the surface of commercial aluminum alloy Al6082. During the electrical discharges in this process,
the strontium aluminate is formed in a similar way to the solid-state reaction method. X-ray powder diffraction
analysis confirms that the monoclinic SrAl2O4 phase is present in the coating.
Optical properties of the obtained coating were analyzedwith luminescencemethods classically used for studies
of luminophores. The performance of the coating was compared with commercially available strontium alumi-
nate powder.
The proposed method of coating synthesis may be of value for the development of energy-efficient and long-
lasting automotive and public safety infrastructure.

© 2018 Published by Elsevier Ltd.
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1. Introduction

The present research is devoted to the development of a new appli-
cation formetal protective coatings. The aim is to producemechanically
and chemically stable coating with added luminescent properties
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obtained by the synthesis of long-lasting luminescence materials such
as the most popular phosphor SrAl.

Since the discovery of long-lasting luminescence of rare earth (RE)
doped strontium aluminates (SrAl) in 1996 by Matsuzawa [1], SrAl
phosphors doped with divalent europium and trivalent dysprosium
ions (SrAl2O4:Eu2+, Dy3+) have been extensively studied [2–9]. This
phosphor material group was proven to be superior to others in many
ways. SrAl doped by RE shows excellent luminescence properties such
as green phosphorescence with long lifetime (N10 h [10–13]) and
high quantum efficiency [2,3,14], good thermal and chemical stability
[5,15], environmental friendliness and nontoxicity [5,16,17]. For these
reasons, SrAl is already used in a wide range of industrial applications
such as traffic and emergency signs [5,18], white-light emitting diodes
[6,16], textile printing [5], biological markers [2,16], as luminous paints
in airports, highways and buildings [3,19] etc.

Strontium aluminates glow in the blue-green region of the spectrum
– the maximum of the emission shifts depending on the host matrix
including different compositions of SrAl, therefore the emission color
is tunable [20]. The luminescence center in these materials is Eu2+,
responsible for broad emission band. Dy3+ co-activation enhances the
luminescent properties of the phosphor, making the afterglow brighter
and longer. The work on prolonging the afterglow of strontium alumi-
nates is still ongoing [20], focusing on altering the defects in the mate-
rial, therefore raising hope that the duration of afterglow in SrAl will
become even longer. The excellent spectroscopic properties of these
hostsmake them attractive for various practical applications in different
forms, including coatings.

Long-afterglow luminescent materials presently are used mostly in
the form of luminescent paint. The luminescent signs, labels as well as
road schemes are typically fabricated via injecting long-afterglowmate-
rial in a paint layer. Thismethod hasmultiple drawbacks: low efficiency,
weak adhesion, complicated preparation process etc. Therefore, new
ways of obtaining SrAl should be developed. One of the emerging
methods is Plasma Electrolytic Oxidation (PEO) process, well-known
for the production of ceramic coatings, however, up to now rarely
used to obtain luminescent coatings.

PEO is a technology for producing hard ceramic coatings on various
valve metal surfaces. Developed in the 70s [21], this method is often
calledmicro-arc oxidation (MAO) [22] or plasma electrolytic deposition
(PED). The technology is based on anodizationwith themain difference
being the use of a higher voltage/current to achieve plasma discharges
through the dielectric layer of the freshly formed oxide coating. PEO
process allows the creation of ceramic and crystalline structures due
to the high temperature (up to several thousands of degrees [23]) and
pressure in highly localized plasma discharges. Many researchers also
Fig. 1. Graphical representation of preparation and characterization of th
point out the possibility to obtain the hardest alumina phase – corun-
dum (hexagonal, α-phase) [24–26]. Hardness [27,28] combined with
excellent chemical stability [26,28–30] of the coatings shows great po-
tential for use inmany practical applicationswhere high-quality protec-
tive layers are required. In addition, it was demonstrated that the
composition of the coating can be modified by particle addition in the
electrolyte [31] which opens great possibilities for development of
functionalized PEO coatings. Obtaining luminescent coatings via PEO
process at presents opens a new field of opportunity for practical
applications. During the recent years, the combination of outstanding
mechanical properties with functionalization of the PEO coatings has
attracted a growing attention. Intense studies of modification of PEO
coatings were carried out to obtain efficient luminescence output
used for acquiring the information about the quality of the coating
[32] as well as for sensor development. An example of a possible new
application is the ZnO PEO coating – it was demonstrated that the
luminescence response shows sensitivity to the oxygen content in the
surrounding gasses [33]. Since RE ions arewell-known as efficient lumi-
nescence centers in many matrices, an essential direction of research is
the process of incorporation of RE ions in PEO coatings. Three main ap-
proaches were developed and successfully applied to embed RE ions in
the structure of the coating and to observe the luminescence output:
alloy doping [32], electrolyte doping and pore filling technique [34,35].

Since this study is aimed at the possible industrial applications, one
of the most common aluminum alloys Al6082 is used as a substrate
for the coatings. In addition, the industry-friendly one-step process of
doping (using modified electrolyte) was used to obtain RE doped SrAl
coating. To the authors' best knowledge, this is the first time SrAl PEO
coating is obtained and also the first time the long-lasting luminescence
is observed from a PEO coating. The addition of long-lasting lumines-
cence to PEO coatings can create new applications in various fields.

2. Experimental section

The preparation and characterization of the physical properties of
long afterglow luminescent PEO coating are shown schematically in
Fig. 1.

2.1. Materials and sample preparation

Strontium carbonate (SrCO3, purity 99.99%), europium oxide
(Eu2O3, purity 99.99%), dysprosium oxide (Dy2O3, purity 99.9%) were
used as the starting materials and were purchased from Alfa Aesar.
Analytical grade chemicals were used without any further purification.
The electrolyte solutions were prepared with deionized water and
e physical properties of the long afterglow luminescent PEO coating.



Fig. 2. The surface of Al6082 before (a) and after the PEOprocess (b), aswell as observed green afterglow luminescence from the PEO coating after UV irradiation (c). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
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potassium hydroxide (KOH, STANLAB). The deionized water with the
conductivity of b0.1 μS cm−1 was obtained from ADRONA Crystal 7
Pure water purification system.

Commercial SrAl powder (Sr0,95Eu0,02Dy0,03Al2O4, purity ≥ 99%) was
purchased from Sigma Aldrich and was used as a reference material for
the long afterglow luminescence comparison purposes.

Commercial aluminum alloy (Al6082) was used as one of the work-
ing electrodes in experiments. Al6082 samples were cut by water jet
from 3 mm thick non-polished Al6082 plate, the final size of Al6082
samples was 25 × 25 × 3 mm, yielding the total area of all 6 faces as
15.5 cm2.

2.2. PEO coating preparation

Before the PEO process, Al6082 sample surface was cleaned with
acetone, washed with deionized water and dried in air at room temper-
ature. To produce long afterglow luminescent coatings, 5 kW bipolar
pulse electric generator (A5V750/300) was used. Pt counter-electrode
with a total surface area of 2.8 cm2 was placed 3 cm from the Al6082
sample. A solution of 1 g L−1 KOH was used as a base for electrolyte
with pH of 12.4; 6.0 g of SrCO3, 0.5 g of Eu2O3 and 1.0 g of Dy2O3 was
added to obtain a white suspension. The electrolyte was placed in a
double-walled tempered glass reactor with an active water cooling
system. A constant voltage-limited (with voltage 700 V and a current
density around 0.18 A cm−2) unipolar regime was applied. Anodization
stage was observed with no plasma discharges for the first 150 s of the
process, followed by a homogeneous distribution of plasma arcs on the
surface of the sample for the remaining process time. The PEO coating of
Fig. 3. a) XRD pattern and b) EDX spect
average thickness 40 μmwas formed in one-hour time. A slight decrease
of the current draw was observed with the current reduced from
0.19 A cm−2 to 0.17 A cm−2 in the last 15 min of the process. The de-
crease is mostly due to the increase in thickness of the oxide layer as
well as the loss of electrolyte by evaporation. After the PEO process,
the sample was washed with an HCl solution to remove the excess of
SrCO3 from the PEO coating surface, then rinsed with deionized water
and dried at room temperature in air.

2.3. Characterization techniques

The crystalline phases of the long afterglow luminescent PEO coating
were characterized by X-ray powder diffraction (XRD, PANalytical
X'Pert Pro diffractometer) using a cathode voltage of 45 kV and current
of 40 mA with Cu Kα radiation (1.5418 Å). The morphology and chem-
ical composition of the long afterglow luminescent PEO coating were
characterized by scanning electron microscopy (SEM, Tescan Lyra)
equipped with energy dispersive X-ray spectrometer (EDX) operated
at 15 kV. Prior to examination, the sample was coated with a gold
layer. The morphology and additional element distribution studies
were performed using a transmission electronmicroscope (TEM, Tecnai
G2 F20, FEI) operated at 200 kV. The samples for TEM studies were
scratched from coating using diamond pen and placed on a lacy carbon
coated grid AGS166-4 (Agar Scientific).

The luminescence was studied using two excitation sources: the
deuterium lamp through Jobin Yvon TRIAX320 excitation monochro-
mator for excitation spectrum recording as well as for afterglow and
kinetics measurements; and X-ray tube (W target, 30 kV, 10 mA) for
rum of PEO coated Al6082 surface.



Fig. 5. SEM BSE image of the cross-section of PEO coated Al6082 surface.

Fig. 4. SEM micrographs of PEO coated Al6082 surface.
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excitation of thermostimulated luminescence (TSL). The detection
was performed using two systems: the Andor Shamrock B-303i
spectrograph coupled with Andor DU-401A-BV CCD camera was used
for TSL measurements; Horiba SR330 monochromator equipped with
150 l/mm diffraction grating coupled with Hamamatsu R928P PMT
tube was used to register excitation spectrum, photoluminescence and
kinetics. The TSL was recorded using a custom-built heating system to
linearly heat the sample with the speed of 2 K s−1.

3. Results and discussion

3.1. Phase composition and morphology of PEO coating

Startingwith an unpolishedmetallic sample of Al6082 alloy, a matte
grey oxide coating was grown on the surface (see Fig. 2a and b). The
coating exhibits green luminescence afterglow after a short irradiation
with ultraviolet (UV) light (390 nm, FWHM 20 nm) (Fig. 2c). One can
observe that the glow of the coating is uneven. The luminescent dot
size is similar to plasma discharge channel, therefore one can conclude
that the emission is observed near them.

XRD pattern of the long afterglow luminescent PEO coating is shown
in Fig. 3a. Several peaks corresponding to γ-Al2O3 and Al from the
substrate can be observed. In addition, XRD peaks that agree well with
the most intensive peaks of monoclinic SrAl2O4 can also be detected.
The relative intensity of the peaks differs from the reference sample,
possibly indicating anisotropic growth of SrAl2O4. The XRD pattern
suggests that another aluminate phase – hexagonal SrAl12O19 might
also be present in the coating. No crystalline phases containing the
dopant ions (Dy3+ and Eu2+/Eu3+) could be detected; therefore, we
can expect the incorporation of these ions in the crystalline lattices of
strontium aluminates or alumina. The EDX spectrum of PEO-coated
Al6082 surface is shown in Fig. 3b. The presence of Sr, Eu and Dy in
the coating is detected confirming the incorporation of both rare earth
and strontium ions in the coating. The EDX analysis revealed the
approximate ratio of elements to be 67% Al, 22% Sr, 4% Eu, 7% Dy at.%,
which is in good agreement with the intended composition of
SrAl2O4:Eu2+, Dy3+.

Fig. 4 shows the morphology of the surface of the coating. At lower
magnifications, microstructures typical to PEO coating can be observed
- with characteristic pores and microcracks (see Fig. 4a). At higher res-
olution, the formation of platy microcrystals is observed (see Fig. 4b
and c). The crystals are assumed to be strontium aluminates with the
average length of 1–5 μm and thickness ranging from 100 to 150 nm.
The platy morphology of crystals is often desirable and is proven to en-
hance ferroelectric and electromagnetic properties [36–40]. EDX results
confirm that all elements from the insoluble additives (Sr, Eu and Dy) of
the electrolyte are present in PEO coating.

The cross-section of the obtained coating was inspected using SEM
(Fig. 5). The average thickness of the coating was estimated to be
approximately 40 μm. EDX map of element distribution was measured
in SEM (Fig. 6). In addition to the aluminum, strontium and oxygen,
rare earth elements are distributed evenly in the coating (although Dy
and Eu signals are close to the detection limit of the setup – their con-
centration in the coating is low).

The morphology and chemical composition homogeneity of the
crystals observed in the PEO coating were characterized using high res-
olution TEM. The brightfield TEM image of an individual platy particle is
shown in Fig. 7a. The dark field TEM images at different rotation angles
(see Fig. 7b–e) revealed the presence of nanocrystals with different
crystallographic orientations showing the polycrystalline nature of the
platy particles and the “tree” type crystal structure is possibly related
to ion diffusion channels during electrical discharges.

Typical element distributionmaps of the same particle are shown in
Fig. 7f–j. Intense signal from Sr, Al, O, Eu andDywas detected, indicating
the formation of rare earth doped strontium aluminate. Signal from Eu
and Dy atoms is detected in all of the platy type particle, confirming
the incorporation of the rare earth activators in the crystalline phase.
In addition, some regions enriched predominantly by Al and O can be
observed, (left upper corner in Fig. 7g–h) supporting XRD data which
indicate the presence of Al2O3 in the PEO coating as well small particles
with higher Sr concentration (Fig. 7f) and Dy concentration (Fig. 7j).
This rises suggestion that these small particles are not melted together
and thus the element distribution homogeneity is low.



Fig. 6. SEM EDX mapping of PEO coated Al6082 surface.
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3.2. Luminescence measurements

The luminescence properties of the obtained coatingwere compared
to those of a commercially available SrAl (Sigma Aldrich), used as a
reference. Luminescence excitation, emission and afterglow were
measured at room temperature. The spectral distributions of afterglow
(long-lasting luminescence, phosphorescence) from the obtained
coating and commercial SrAl are almost identical indicating that the
afterglow luminescence centers of both coating and commercial
powder are the same (Fig. 8b). However, an additional peak appears
under UV (320 nm) excitation at 455 nm (2.72 eV) in the emission
spectrum of the coating.
Fig. 7. TEMmicrographs of an individual platy particle isolated from PEO c
The 520 nm peak can be attributed to the typical 5d-4f emission of
Eu2+ [41]. This peak is present in the emission spectra of both samples
and is the evidence of Eu2+ ion incorporation in the PEO layer. The lumi-
nescence band at 520 nm is strong evidence that during the formation
of PEO coating SrAl2O4 containing Eu2+ is created, thus the Eu3+ is
reduced.

The secondmaximum at 455 nm (2.72 eV), present only in PL of the
coating could be associated with Eu2+ ion incorporation in another Sr
position of the SrAl matrix [42]; however, some contribution from the
intrinsic amorphous alumina luminescence [43,44] cannot be excluded.
It is noted in literature that this maximum is thermally quenched at
temperatures starting from 150 K [2,45]; therefore, it might also be
oating: a) bright field, b–e) dark field, f–j) element mapping images.



Fig. 9. Thermostimulated luminescence (TSL) measurement of the obtained coating.

Fig. 8. a) Excitation spectrum of the coating measured at 540 nm b) Luminescence spectra of the coating under UV irradiation at 320 nm (solid line, dotted lines show Gaussian
components), the afterglow from the coating (dashed line) as well as the afterglow of the reference SrAl sample (dash-dotted line).
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attributed to the luminescence emerging from different strontium
aluminate compounds present in the coating. Dutczak et al. [20] have
concluded that the changes in Sr/Al ratio strongly affect the position of
the 4f6-5d1-4f7 emission of Eu2+. We noted beforehand that XRD
measurements show some traces of different aluminate that might be
present in the coating. The researchpaper [20] shows different positions
of maxima depending on the host and 455 nm maximum might be
attributed to SrAl4O7:Eu luminescence.

To determine if there is any alumina intrinsic defect luminescence
contribution, undoped alumina coating is prepared and studied. The
455 and 520 nm luminescence bandswere not observed in the lumines-
cence spectrumof the undoped coating. This observation draws a logical
conclusion that the band at 455 nm indeed somehow relates to Eu2+

emission in the SrAl matrix and cannot be associated with alumina
intrinsic defects luminescence [46–48]. This conclusion correlates well
with the general observation of Eu2+ ion in various other aluminate
matrices (BaMgAl, BaEuAl etc.) [8,49].

The excitation spectrum measured for the 520 nm emission band
(Fig. 8a) consists of two peaks. The overall shape and position of the
excitation spectrum are similar to those of SrAl reported in other studies
[50].

The physical phenomenon behind long-lasting luminescence in SrAl
is thermally assisted charge release from electron traps, followed by the
electron recombination at luminescence center. Therefore, it is crucial to
perform thermostimulated luminescence (TSL) measurement above
the room temperature (Fig. 9). A broad, intense and possibly complex
glow peak was observed. The maximum of glow peak is at 425 K, the
FWHM is 144 K.

The spectrum of TSL is the same as recorded for afterglow and this is
in accordance with the mechanism of long afterglow as discussed in
[8,51]. The main idea of this mechanism is that electron is thermally
released from some trap and recombines with Eu3+. Thus, the excited
Eu2+ center is created, and its radiative decay is the origin of the ob-
served luminescence. Since the initial rise of glow curve is slightly
above room temperature, the probability of electrons to be released
from the trap is low, the process of emptying of the traps takes a long
time and the afterglow can be observed. The actual TSL luminescence
phenomena are usually much more complex than the “single trap”
model, and the complex TSL glow curve of the studied coating confirms
that.

Luminescence kinetic was measured at room temperature (Fig. 10)
for the 520 nm band. The decay of the luminescence after short irradia-
tion time (t = 10 s) can be best approximated with a stretched expo-
nential function. The physical interpretation can be found in [52],
stating a wide distribution of the energy levels (traps) that the electron
can occupy around the charged ion (Eu2+ in our case). Disorder in oxide
materials causes a distribution of trap energies and charge carrier re-
lease rates. This distribution is responsible for the multiple diffusion
that arises from a multiple trapping–detrapping events. Therefore, the
decay kinetics of luminescence is superposition from a number of expo-
nential decays [53,54] and can be well approximated by the stretched



Fig. 10. Luminescence kinetic of the obtained coating at room temperature after 10min of
UV excitation. Red dashed line shows the stretched exponent approximation, the formula
is inserted in the graph. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)
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exponent. The stretch power 0.3 in our case is associatedwith the differ-
ences of trap energies. This statement correlates well with wide TSL
glow curve maximum representing a wide range of trap energies.

A signal from strontium aluminate in aluminum PEO coating is de-
tectable even min after the short irradiation with UV light; however,
the sample still needs to be optimized for it to match the performance
of commercially available SrAl powders (hours of afterglow). Using
the PEOmethod for surface treatment, three different processes happen
simultaneously – the electrochemical reactions, the plasma chemical re-
actions and thermal diffusion [55]. Electrochemical surface treatment
using the PEO process on Al6082 is schematically illustrated in Fig. 11.
During the PEO process a sufficient electric potential is applied, Al first
reacts with basic electrolyte to form amorphous, nonconductive Al2O3

coating on the Al6082 surface by the following equation [56,57]:

2Alþ 6OH−→Al2O3 þ 3H2Oþ 6e− ð1Þ

At this stage, the voltage between Al6082 and the electrolyte is in-
creasing until plasma discharges are created. These plasma discharges
consequently cause a local plasma reaction that induces the high-
temperature conditionswhichmodify Al2O3 growth and initiates the re-
action between Al2O3, SrCO3, Eu2O3 and Dy2O3. Due to the high energy
nature of the PEO process, the temperature of the plasma reaches
1400 °C [21] and according to the studies [58], hydrogen is formed in
the plasmas discharge channels by exothermic reaction with water
Fig. 11. Schematic illustration of the electrochemical proce
vapor. Thus, some elements change their charge states in the plasma
discharges relative to those existing in the precursors. Thermal diffusion
affects the oxygen (O2−)migration from SrAl coating to theAl boundary
surface thus forming Al2O3. Themigration of oxygen increases the num-
ber of oxygen vacancies in the SrAl coating, therefore reducing Eu3+ to
Eu2+.

The formation of long afterglow luminescent coating, according to
PEO method, can be described by the following equation:

Al2O3 þ 1−x−yð ÞSrCO3 þ xEu2O3 þ yDy2O3→Sr1−x−yEuxDyyAl2O3

þ 1−x−yð ÞCO2↑ ð2Þ

Similarly, the SrAl can be formed by the solid-state reactionmethod.
The solid-state synthesis method of SrAl powder is described by the
following equation [59–61]:

Al2O3 þ 0:97SrCO3 þ 0:005Eu2O3 þ 0:01Dy2O3→
1350oC;H2=N2

‐H2O;‐NxOy ;‐COz

→Sr0:97Eu0:01Dy0:02Al2O4 þ 0:97CO2↑
ð3Þ

Using the PEO method, the long afterglow luminescent coating can
be prepared on the commercially available alloy Al6082 surface in
one-step one-pot synthesis. In comparison with the most popular
method of preparation of this material – solid-state reaction method,
our approach provides various advantages. The most important one is
the simplicity, especially when the luminescent coating is needed. In
contrast, the powder formed by solid-state reaction still needs to be
processed and deposited on the substrate. Another great advantage is
the environmental friendliness of the PEO. When alternatively using
the solid-state reaction method, a larger energy consumption is needed
to anneal the powder at up to 1400 °C for several hours (2–4 h) [59–61]
and reducing atmosphere (N2+H2) is required in order to increase the
number of oxygen vacancies and to reduce Eu3+ to Eu2+. This leads to a
pollution of the environment byNOx and is a serious concern for volume
production of the material.

4. Conclusions

For the first time, a long afterglow luminescent coating containing
monoclinic SrAl2O4:Eu2+, Dy3+ was produced on aluminum in the
PEO process. To create it, SrCO3, Eu2O3 and Dy2O3 powders were
suspended in KOH based electrolyte and Al6082 aluminum alloy was
used as a substrate. Excellent optical properties were observed: lumi-
nescence similar to that emitted by commercially available strontium
aluminates, and a long afterglow after a short irradiation time. The lumi-
nescence band of Eu2+ observed in the spectrum of the long afterglow
confirms that Eu3+ originating from Eu2O3 is reduced to Eu2+ in the
process of PEO coating creation.
ss on the surface of Al6082 during the PEO treatment.
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With the addition of novel luminescent properties, a completely
new type of functional materials was obtained. The developed technol-
ogy is offering a simple and cost-effective one step synthesis route for
production of long afterglow luminescence coatings. It is promising for
applications where both the metal protection from the environment
(longevity) and the high visibility are desired. The simplest examples
are the external parts of a car/plane or surface of the buildings/road
signs and various types of emergency signs.
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