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Abstract

This resume of a physics doctor dissertation is devoted to the use
of quantum phase transition and chaos conceptions in algebraic and
geometrical nuclear structure models. In the frameworks of algebraic
approach of the standard Interacting Boson model (IBM-1), nuclear
shape phase transitions are studied employing corresponding classical
energy functional expressions depending on nuclear quadrupole defor-
mation parameters β and γ. Model parameter values, corresponding
to phase transition critical lines and points, are obtained via a precise
solution of equations for minima conditions. The results are compared
with those obtained using the Landau method of the energy functional
expansion in Taylor series. The above analysis of nuclear shape phase
transitions is performed in the case of simplified Casten’s version of
IBM-1, in the case of O(6)-limit IBM-1 Hamiltonian including three-
boson interaction terms, and in the case of complete IBM-1 Hamil-
tonian. Behaviour of quantum chaos statistical criteria - the nearest
level energy spacing distribution P (S), and dynamical criteria - the
entropy of perturbed Hamiltonian H state wave functions W (Ψi), and
the fragmentation width of unperturbed Hamiltonian H0 state basis
functions κ(Φk), is studied in dependence from nuclear shape param-
eters in the frameworks of algebraic (simplified Casten’s version of
IBM-1) and geometrical (rigid triaxial rotator) models. Especial at-
tention is given to model parameter ranges in the vicinity of nuclear
shape phase transition critical lines and points. The developed meth-
ods are applied for the analysis of critical phenomena experimentally
observed in the structure of tungsten, osmium, and platinum even-
even nuclei with 184 ≤ A ≤ 194 belonging to the A ∼190 region.

The results of dissertation have been published in three refereed
journal papers, and one paper in international conference proceedings
book; additional two journal papers have been submitted for publi-
cation. One journal paper has been published in the local scientific
journal. The results of dissertation have been reported in eight oral
and two poster presentations both at international and local scientific
conferences. The Bibliography of the full dissertation text includes 63
titles.
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1 Introduction

Progress in the development of experimental techniques allowing to study
nuclei far from stability region and at high spin values, as well as extensive use
of nuclear models based on group theory approach spurted, especially during
last two decades, an interest in the study of critical phenomena in nuclear
structure. Scientific literature on nuclear physics includes a great number of
papers devoted to various aspects of quantum phase transitions (QPT) and
quantum chaos (see, e.g., a most extensive review article of P.Cejnar and
J.Jolie [1], and references therein). In these studies, nuclear theoreticians
apply conceptions and methods developed for other physical systems: e.g.,
for the study of QPT in nuclei, the classical thermodynamics approach is
used, including the Landau theory of phase transitions.

Algebraic models allow one to present system’s Hamiltonian in terms of
Casimir invariants belonging to some integrable (regular) system, which en-
ables one to perform numerical analysis of phase transitions in terms of chosen
critical variables. The most popular of these algebraic nuclear models is the
standard interacting boson model IBM-1, and its simplified two-parametric
Casten’s version employed for quantum chaos, and QPT studies by most of
authors.

Historically first most important results about quantum chaos, and QPT
relationships in the frameworks of IBM-1 were published in papers by Y. Al-
hassid et al. [2, 3]. They studied chaos in the properties (energies, and E2
transitions) of low-lying collective states of even-even nuclei introducing a
simplified two-parametric IBM-1 Hamiltonian. The use of such approach al-
lowed to study transitions between three limiting cases of IBM-1 via a change
of one chosen variable. These studies were developed further by P. Cejnar,
J. Jolie, and co-workers in [4, 5, 6, 7]. In [4], the information entropy of
IBM-1 wave functions with respect to dynamical symmetry limits has been
proposed as a measure of a symmetry breaking, i.e. a transition from one type
of system’s symmetry to another. Relationships between shape phase transi-
tions and wave function entropy have been analyzed employing the classical
energy functional expression of simplified Casten’s version of IBM-1.

A somewhat different approach to the analysis of QPT in the complete
version of IBM-1 has been proposed by E. López-Moreno and O. Castaños [8].
They have employed for the analysis of Ecl energy surfaces the formalism of
the catastrophe theory and have shown that the equilibrium configurations,
in the most general case, can be classified employing just two essential control
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variables (r1, r2) that are derived from the parameters of the complete IBM-1
Hamiltonian.

However, there always is a possibility that some previously uncleared de-
tails, both theoretical and experimental, would lead to a deeper understand-
ing of certain phenomena. Therefore, we have undertaken a study in the field
seemingly well-covered by publications - the QPT and quantum chaos in alge-
braic (IBM-1) and geometrical (rigid triaxial rotator) nuclear models. There
still are some unanswered questions that we shall try to answer. One of these
questions is the extent to which a use of thermodynamics methods is justified
in the case of nuclear theory, when the number of constituent particles is lim-
ited. Therefore, we shall consider an approach alternative to the ordinarily
used Landau theory of phase transitions. When studying quantum chaos, the
usually considered criteria are the energy level spacing distribution, and the
wave function entropy. We shall try to show that the fragmentation width of
basis states [9], which is widely used in reaction theory, can be successfully
applied as a quantum chaos criterion for nuclear structure models. Developed
theoretical methods of QPT and quantum chaos studies will be applied for
the analysis of experimentally observed critical phenomena in the structure of
even-even nuclei belonging to the transitional deformation region at A ∼190,
studied by the physicists of the LU ISSP Nuclear Reaction Laboratory.

Also, the understanding of such fundamental concepts as the quantum
system’s phase transitions, and the relationship between system’s symme-
tries and quantum chaos, as well as the use of these conceptions for the
study of a complex physical object - an atomic nucleus, have a considerable
methodological and educational value. Therefore, the presented physics doc-
tor dissertation serves also as a personal training ground, and a basis for
further studies of more complex and actual problems of nuclear physics or
any other quantum system’s theory.

1.1 Basic conceptions about nuclear shape
phase transitions and quantum chaos

In the frameworks of the unified model approach, a nuclear core is described
as a drop of incompressible ”nuclear liquid”. Valence nucleons are moving in
the mean field formed by the core that can have spherical or deformed shapes
in the equilibrium ground state. One can describe collective excitations of
the nuclear core employing collective variables αλµ, defined by the deviation
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of nuclear surface from the spherical equilibrium shape [10]:

R(θ, φ, t) = R0

[
1 +

∑
λµ

(−1)µαλ−µ(t)Yλµ(θ, φ)

]
, (1)

where R0 is the radius of the equivalent volume sphere. In the case of
quadrupole deformation (λ = 2), the shape of nucleus in the internal ref-
erence frame is characterized by two variables β, and γ; nuclear shape is
prolate when β > 0, and oblate when β < 0. The asymmetry parameter
γ indicates a deviation of the nuclear core from the axial symmetry: when
γ=0◦, 60◦,. . . , the core is axially-symmetric.

In Bohr-Mottelson approach [11], one considers collective excitations of
the axially-deformed core – rotation and vibrations, which are the cause of
dynamical deformation. These excitations are coupled with single-particle
degrees of freedom of valence nucleons. The geometrical approach has been
especially successful in the case of deformed nuclei with mass numbers 140 <
A < 200.

Another geometrical model has been proposed in 1958 by A.S. Davy-
dov and G.E. Filippov [12]. They assumed that there are nuclei having a
non-axial ground state deformation – rigid triaxial rotators. In such a case,
collective coordinates a0, a2 assume fixed non-zero values, and nuclear core
has three different moments of inertia. Collective nuclear Hamiltonian of an
even-even nucleus in the case of rigid triaxial rotator model H3ax can be pre-
sented (see, e.g., [10]) as the Hamiltonian of the axially-symmetric rotator
Hax

0 plus perturbation term, and the matrices of H3ax are diagonalized in
the basis of axially-symmetric rotator eigenfunctions. The nuclear triaxial
rotator model is interesting for quantum chaos studies because of its rela-
tionship to the classical integrable system - the rigid asymmetric top (see,
e.g., [13, 14]).

Another phenomenological approach to the description of nuclear core is
that of interacting boson models (IBM) [15]. The main idea of IBM is that
the nuclear core is built from bosons – pairs of coupled nucleons, charac-
terized by definite angular momentum value l. The number of bosons (Nb)
usually is associated with the total number of nucleon pairs (particles or
holes) outside the nearest closed proton, and neutron shells for the given nu-
cleus ((Z,N)=2,8,20,28,50,82,126). Nuclear collective Hamiltonian includes
single boson excitation terms and two-boson interactions. Single-particle de-
grees of freedom of valence nucleons, included in the case of odd nuclei (the
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Interacting Boson-Fermion model (IBFM)), and odd-odd nuclei (the Inter-
acting Boson-Fermion-Fermion model (IBFFM)), usually are the same ones
as used in the unified model. Evaluation of interacting boson models is based
on group theory approach, employing algebraic techniques of unitary groups
and subgroups, characterizing total number of bosonic and fermionic degrees
of freedom.

In the simplest version of IBM - the IBM-1 model (or standard IBM),
one uses two types of bosons: one s-boson (l = 0) and five d-bosons (l = 2).
The wave functions of IBM-1 Hamiltonian [15, 16] are classified according to
the completely symmetric representations [Nb] of group U(6) in any of three
chains:

U(6) ⊃


U(5) ⊃ O(5) ⊃ O(3) ⊃ O(2)
O(6) ⊃ O(5) ⊃ O(3) ⊃ O(2)
SU(3) ⊃ O(3) ⊃ O(2)

(2)

Employing Casimir operators of corresponding subgroups, one can present
the complete IBM-1 Hamiltonian in multipole expansion form proposed by
F. Iachello and A. Arima (see, e.g., [15, 17]):

Hsd = ε′nd +
1

2
η(L · L) +

1

2
κ(Q ·Q)− 5

√
7ω
[
[d+ × d̃](3) × [d+ × d̃](3)

](0)
+ 15ξ

[
[d+ × d̃](4) × [d+ × d̃](4)

](0)
, (3)

where quadrupole moment operator Q is presented as [18]

Q(χ) = [d+ × s̃ + s+ × d̃](2) + χ[d+ × d̃](2), (4)

and ε′, η, κ, ω, ξ, and χ are model parameters.
Energies and wave functions of the complete IBM-1 Hamiltonian Eq. (3)

are obtained by its diagonalization in the basis of eigenfunctions of either
of three subgroup chains Eq. (2). All three reduction chains are equiva-
lent, and a rank n of the diagonalized matrix is determined by the total
number of bosons Nb. Unperturbed Hamiltonians, containing only diagonal
terms (Casimir invariants) of corresponding subgroup chain, are known as
the U(5), O(6), and SU(3) limits of IBM-1, which are usually associated with
vibrational, asymmetric (γ-unstable) rotator, and axially-symmetric rotator
nuclear core excitations [15, 16]. The most general and often used IBM-1
Hamiltonian diagonalization basis is that of the spherical U(5) vibrational
limit.
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A great attention during last decades has been devoted to the study of
thermodynamic phase transitions in finite systems, such as Bose-Einstein
condensates, atomic clusters, etc. The notion about quantum phase transi-
tions (QPT), for the most part, is related to the study of critical phenomena
of interacting quantum objects at zero temperature, when the only possible
cause of the onset of disorder are quantum fluctuations. Then, one observes
a transition between two distinct types of the ground state wave function
(see, e.g., [1]). Such transition between H(0), and H(1) phases is described
via the change of perturbing interaction, which one can trace using a dimen-
sionless control variable ρ that is ordinarily normalized to fit into the range
ρ ∈ [0, 1]:

H(ρ) = H0 + ρV = (1− ρ)H(0) + ρH(1). (5)

A crossing of the critical point is usually studied in the infinite size limit
when the number of particles N →∞.

In the case of atomic nuclei, the classical thermodynamic phase transi-
tions are studied at high excitation energies, and/or high rotation frequen-
cies. In the ground state, and at low energy and spin values, one observes
the change of the nuclear shape, which is represented by the minima of nu-
clear collective potential energy expression V (β, γ) in the (β, γ) phase space
diagram (see, e.g., [10]). Then, one can study transitions between prolate
(β > 0), oblate (β < 0), and spherical (β = 0) nuclear shapes. The analy-
sis of the potential energy surface minima in dependence on specific nuclear
model parameters allows to study the nuclear shape phase transitions em-
ploying either the Landau theory of phase transitions [7], or a catastrophe
theory approach [8].

The IBM-1, having a comparatively simple structure due to its algebraic
symmetry properties, and including explicit dependence on N and Z via the
total boson number Nb, provides a possibility to analyze QPT in a wide range
of nuclei. One can study these transitions considering the division of complete
IBM-1 Hamiltonian into integrable Hamiltonians H0 of limiting cases: U(5),
O(6), and SU(3), and the perturbation terms depending on chosen control
parameter values. A deeper insight in the phenomenon of nuclear shape phase
transitions one can obtain studying classical energy functional expressions of
corresponding algebraic models, obtained in the Nb → ∞ limit (see, e.g.,
[19]). Once the classical energy functional expression Ecl of employed IBM-1
version is known, one can study its behaviour in the nuclear shape diagram
(β, γ), linking it with three limiting cases of IBM-1 employing the notions

7



about first and second order QPT (see, e.g., [20]).
The problem of chaos in quantum physics is still a theme of discussions

(see, e.g., [21, 9]). Most of authors support a moderate view stating that the
term ”quantum chaos” denotes the quantum limit of phenomena characteris-
tic to chaotic systems of classical mechanics. The studies in this direction are
based mostly on the use of quasi-classical approximations. However, since
the quantum mechanics involves the classical one as its particular limiting
case, it is impossible to define quantum chaos in a consistent way from the
point of view of classical mechanics. Therefore, the second, strictly negative
opinion, persists that there is no such thing as quantum chaos. The third
group believes that the chaocitity displayed by quantum systems has a purely
quantum origin, related with the symmetry properties of integrals of motion
(dynamics) of corresponding quantum systems.

In the consideration of QPT, it has been already noted that the only
possible cause of the onset of disorder at zero temperatures are quantum
fluctuations. Therefore, the phenomena of QPT and quantum chaos are
closely related, just as the starting points of their study, i.e., the division
of non-integrable model Hamiltonian H into integrable (symmetric) part H0

and perturbation term V . Solution of the Schrödinger equation for H is
obtained via diagonalization of H matrix in the basis of H0 eigenfunctions
Φk (k = 1, . . . , n), giving eigenvalues Ei, and eigenfunctions Ψi presented as
the superposition

Ψi =
n∑
k=1

cikΦk, (6)

where cik are mixing amplitudes.
The most popular statistical criterion of quantum chaos is a distribu-

tion P (S) of nearest level spacings S = Ei−1 − Ei. It has been proved [22]
that, for regular, completely integrable quantum systems described by non-
degenerate Hamiltonians, the level spacing distribution assumes a Poisson
form PP (S) = exp (−S). On the contrary, level spacings of the quantum
analogue of the classically chaotic system (Sinai’s billiard) obey Wigner dis-
tribution PW (S) = (π/2) · S · exp (−πS2/4), which is consistent with the
Gauss orthogonal ensembles (GOE) statistics of random matrices (see, e.g.,
[23]). A transition from the regular (integrable) state of the system to the
chaotic (non-integrable) one can analyze employing, e.g., the one-parameter
Brody distribution [24]:

PB(S) = aSζ exp
(
−bSζ+1

)
, (7)
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where a = (ζ + 1)b, and b =
{

Γ
(
ζ+2
ζ+1

)}ζ+1

. The form of distribution is de-

termined by the value of Brody parameter ζ: when ζ=0, one obtains Poisson
distribution; when ζ=1 - Wigner distribution.

The most popular dynamical quantum chaos criterion is a Shannon in-
formation entropy of the wave function defined as follows [4]:

W (Ψi) = −
n∑
k=1

|cik|2 · ln
(
|cik|2

)
, (8)

characterizing the admixture of the integrable (regular) Hamiltonian H0

eigenfunctions Φk in the wave function Ψi of the perturbed Hamiltonian
H. Minimal value of the wave function entropy W (Ψi)

min = 0 corresponds
to unmixed state, the wave function of which coincides with one of H0 eigen-
functions (Ψi = Φk). The theoretically possible maximal entropy value
W (Ψi)

max = ln(n) corresponds to the case, when the perturbed Hamiltonian
H wave function is uniformly spread (fragmented) over all regular Hamilto-
nian H0 basis states, i.e., all mixing amplitudes are |cik|2 = 1/n.

Another dynamical quantum chaos criterion, proposed by V. Bunakov [9],
is the fragmentation of basis states κ(Φk). Value of this criterion for the k-th
basis state Φk of some regular Hamiltonian H0 is defined [9, 25] as the ratio
of Φk fragmentation width over the states Ψi of the perturbed Hamiltonian
H (Γspr(k)) to the averaged spacing D0 of the regular system’s eigenvalues
εk:

κ(Φk) = Γspr(k)/D0. (9)

However, due to condition

|ci=k,k|2 < 0.5, (10)

imposed on mixing amplitudes involved in κ(Φk) evaluation, one cannot use
this criterion in the case of small perturbations. Criterion κ(Φk) allows one
to characterize the system’s dynamical quantum chaos state as: a) a soft
chaos case, when 0 < κ(Φk) < 1; b) a hard chaos case, when κ(Φk) ≥ 1.
In the classical limit, the fragmentation width of basis states is transformed
[9] to the well-known classical characteristics of chaoticity – the Lyapunov’s
exponent λ.
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1.2 The aims and methods of presented research work

The problems that are to be resolved in the scope of this dissertation can be
defined as follows:

1) to obtain precise analytical expressions for the classical energy func-
tional Ecl minima conditions in terms of nuclear quadrupole deformation
parameter β, and to apply the obtained expressions for the analysis of nu-
clear shape phase transition critical lines and points in the case of several
simplified IBM-1 versions, and in the case of complete IBM-1 Hamiltonian,
comparing the results with those obtained employing the approach of the
Landau theory of phase transitions, when the higher order terms of Ecl ex-
pansion are disregarded;

2) to analyze and compare the behaviour of statistical and dynamical
quantum chaos criteria in terms of nuclear quadrupole deformation parame-
ters, and shape phase transitions in the frameworks of algebraic IBM-1 and
geometric rigid triaxial rotator models of even-even nuclei;

3) to assess a possibility to employ the basis state fragmentation width
κ(Φk) as a dynamical quantum chaos criterion in the case of algebraic (IBM-
1) and geometrical (rigid triaxial rotator) nuclear structure models;

4) to apply the developed theoretical approach for the study of prolate-
oblate shape phase transition, which is experimentally observed in the tung-
sten, osmium, and platinum isotope chains belonging to the A ∼190 region.

For the study of precise analytical solutions of the classical energy func-
tional minima problem, and the comparison of obtained results with those
obtained by other authors, following IBM-1 versions have been chosen:

a) the simplified two-parameter Casten’s version (see, e.g., [2, 4]);
b) the O(6)-limit Hamiltonian with included cubic d-boson interaction

terms [26, 27];
c) the O(6)-limit Hamiltonian with attached cubic quadrupole moment

term [Q̂Q̂Q̂](0) [28] in two variants: the one conserving the dynamical O(6)-
symmetry, and the O(6)-symmetry non-conserving variant; one should note
that, in the latter case, the Ecl minima problem has not been studied before;

d) the complete IBM-1 version [15].
For all model versions, precise analytical solutions for the Ecl minima

condition equations in terms of nuclear quadrupole deformation parameter
β (at γ = 0) have been obtained employing the computer program package
Mathematica. The behaviour of these minima in dependence on IBM-1 pa-
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rameter values has been analyzed in terms of QPT critical lines and points.
The results of precise solution method have been compared with analogous
results obtained using the Landau phase transition theory approach. The
effects due to accounting of higher order terms of Ecl expansion have been
assessed in the case of complete IBM-1 version.

The standard IBM-1 computer program package PHINT by O. Scholten
[17] has been used for the diagonalization of IBM-1 model Hamiltonian in
order to obtain eigenvalues and eigenfunctions for the evaluation of statistical
(P (S)), and dynamical (W (Ψi) and κ(Φk)) quantum chaos criteria, as well as
for the calculation of theoretical energy values in the case of selected A ∼190
region nuclei.

A specially written computer program has been used for the diagonaliza-
tion of rigid triaxial rotator model Hamiltonian matrices at different nuclear
spin I values. Model Hamiltonian matrices have been obtained in depen-
dence on γ, in the case of Davydov’s model [29], and γ and β, in the case of
Bravin-Fedorov’s model [30, 31].

The behaviour of quantum chaos criteria has been studied in the frame-
works of:

a) the algebraic simplified Casten’s version of IBM-1; and
b) two geometric rigid triaxial (asymmetric) rotator models.

These models have a relatively simple structure, and a small number of model
parameters: one parameter γ - in the case of Davydov’s model, and two pa-
rameters - in the case of Bravin-Fedorov’s model and in the case of simplified
Casten’s version of IBM-1. Parameters of the Casten’s version of IBM-1
(η, χ) are directly linked with the nuclear quadrupole deformation parame-
ters β, γ via classical limit energy Ecl expressions. It provides an opportunity
to compare the behaviour of quantum chaos criteria in the frameworks of both
approaches: geometrical and algebraic.

Hamiltonian matrices of both models at each nuclear spin I value have
finite rank: n = n(I), in the case of rigid triaxial rotator models, and n =
n(I,Nb), in the case of IBM-1. However, one should take into account that,
while nuclear spin I values are unlimited in the frameworks of geometrical
approach, in the case of IBM-1, boson number Nb determines a cut-off value
for the nuclear spin. The existence of an upper limit affects the observed
mixing of IBM-1 states at higher spin values.

The developed methods have been applied for the analysis of relation-
ships between shape phase transitions and quantum chaos criteria in the
case of selected nuclei. For this purpose, we have chosen 15 even-even iso-
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topes of tungsten (Z = 74), osmium (Z = 76), and platinum (Z = 78)
with 184 ≤ A ≤ 194, belonging to the transitional deformation region at
A ∼190. Nuclei of these three elements are known to have shapes ranging
from the stable prolate axial-symmetry (184W) to the asymmetric γ-unstable
form (194Pt). This is one of regions where traditionally the prolate-oblate
shape phase transition is studied; so, there is a possibility to compare our
results both with experimental data, and with results of other model calcu-
lations. The confidently established experimental data about excited level
energies and electromagnetic properties of considered nuclei have been taken
from the ENSDF data compilations [32] with a deadline up to January 2010.
Therefore, we have used for our analysis experimental information which is
more accurate than that available for the most of earlier studies.

We have limited our calculations with nuclei belonging to the 184 ≤ A ≤
194 region and having boson numbers Nb from 7 to 12, excluding experimen-
tally well-known heavier platinum isotopes. Such choice was motivated: a)
by the lack of confident experimental data about heavy tungsten and osmium
isotopes in the ENSDF data base; b) by the fact that one needs a sufficient
number of basis states for the calculation of quantum chaos criteria; c) by
the circumstance that, at A ≥ 194, when neutron number approaches the
closed shell at N = 126, it is hard to distinguish which phase transition takes
place - the prolate-to-oblate or the deformed-to-spherical.

Analysis of experimental data shows that the nuclear shape phase transi-
tion in the W-Os-Pt region has a very complex nature. In fact, two parallel
transitions take place: the SU(3)−O(6)− SU(3) phase transition from the
deformed prolate shape to the deformed oblate shape, and the deformed-to-
spherical O(6)−E(5)−U(5) transition. Besides, deformation of the nuclear
ground state and that of higher excitations can be different, i.e, there is a
possibility of shape coexistence. Therefore, one must vary IBM-1 parame-
ters in the entire model parameter space, not just along some selected phase
transition critical line, i.e., one should use the complete version of IBM-1
in multipole representation, which enables one to describe in a uniform way
various nuclear shapes, and to study the transition from one shape to an-
other.

Values of IBM-1 model parameters have been obtained via fitting of the-
oretical spectra to experimental energies of low-lying collective states in the
case of each of considered nuclei. In difference from the most of well-known
prolate-oblate shape phase transition studies, we have considered in our anal-
ysis the entire low-lying spectrum of each nucleus. Usually, only a few lowest
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levels are taken into account (see, e.g., [33]). The obtained results have
been analyzed both in terms of the SU(3)−O(6)− SU(3) first order phase
transition control variable χ, and employing the catastrophe theory essential
control parameters (r1, r2), introduced in [8]. The behaviour of the statis-
tical and dynamical quantum chaos criteria, calculated for each nucleus in
the frameworks of algebraic complete IBM-1 version, has been studied both
in dependence from the phase transition control parameters, and in depen-
dence from nuclear spin I. A possibility to compare the results of algebraic
IBM model with the ones obtained using geometrical rigid triaxial rotator
approach has been considered.

2 The studies of QPT and quantum chaos

employing simplified IBM-1 versions

We have started our studies of nuclear shape quantum phase transitions and
quantum chaos with the most simple algebraic model - the two-parametric
Casten’s version of IBM-1. The results of these studies have been published
in two papers [R1,R2], and reported at the international conference in 2005
[A1].

In the frameworks of Casten’s version, Hamiltonian of the standard IBM-
1 is written in a following simplified form (see, e.g., [2, 4]):

H(Nb, η, χ) = η · nd +
η − 1

Nb

Q(χ) ·Q(χ), (11)

depending from the total boson number Nb, and two model parameters η and
χ. In Eq. (11), nd is the number operator of d-bosons; and the quadrupole
operator Q(χ) is defined as Eq. (4). This simplified version retains all dy-
namical symmetries of complete IBM-1 Hamiltonian [4]. Eq. (11) one can
obtain from the multipole representation Hamiltonian Eq. (3) by letting
ε′ = ω = ξ = 0. Parameters η, and χ can assume values 0 ≤ η ≤ +1,
and −

√
7/2 ≤ χ ≤ +

√
7/2, varying within the space of extended Casten’s

triangle. This triangle is formed by lines linking the vertex χ = 0, η = +1,
corresponding to spherical U(5) dynamical symmetry limit of IBM-1, with
the χ = −

√
7/2, η = 0 and χ = +

√
7/2, η = 0 vertexes, corresponding to

deformed SU(3)- and SU(3)-symmetric prolate and oblate shapes, respec-
tively. The χ = η = 0 point corresponds to the O(6) dynamical symmetry
of γ-soft (unstable) shape.
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The classical energy functional Ecl(Nb, η, χ; β) of Hamiltonian Eq.(11) has
been obtained in [5]. The condition on the second order derivative of Ecl (see,
e.g., [34]):

d2Ecl(Nb, η, χ; β)

dβ2

∣∣∣
β=0

= 0, (12)

gives equation for critical points separating spherical β = 0 and deformed
β 6= 0 shapes:

2(Nbη − A0(4N
2
b + χ2 − 8)) = 0. (13)

Solution of Eq. (13) with respect to parameter η:

η = (4Nb + χ2 − 8)/(5Nb + χ2 − 8), (14)

defines the second order phase transition line X(5)− E(5)−X(5).
Solution of the equation system consisting from Eq. (14) and condition

χ = ±(
√

7/2)(η − 1) (15)

allows one to obtain values χX(5), ηX(5), describing location of the critical
point on the U(5) − SU(3) line, characterized by the X(5) dynamical sym-
metry [35] (analogously for the X(5) point). Solution of Eq. (14) at χ = 0
gives position of an isolated triple point ηE(5) = (4Nb − 8)/(5Nb − 8) where
critical lines of the second order phase transition between spherical and de-
formed shapes meets with first order phase transition line separating prolate
(β > 0) and oblate (β < 0) deformations. This critical point is characterized
by the E(5) symmetry [36]. Therefore, the first order prolate-oblate phase
transition line can be denoted as E(5)−O(6).

Usually one applies for the study of nuclear shape phase transitions the
approach proposed by Landau, as it has been done, e.g., in [7, 20]. One uses
the expansion (1 + β2)−2 = 1− 2β2 + 3β4− 4β6 + · · · and rewrites Ecl in the
form:

Ecl(Nb, η, χ; β) = E0(η)+AL(Nb, η, χ)β2+BL(Nb, η, χ)β3+CL(Nb, η, χ)β4+· · · .
(16)

However, it is possible to obtain a precise analytical solution for the energy
minimum, which follows from the extreme condition

∂Ecl(Nb, η, χ; β)

∂β
= 0, (17)

14



Figure 1: Real (a-c) (and imaginary (g-i)) parts of β0i (i = 1, 2, 3), and cor-
responding minimal energy values E0i(Nb, η, χ; β0i) (d-f; and j-l). Numerical
calculations have been performed at Nb = 8.

resulting in cubic equation for nuclear quadrupole deformation parameter β
(see [R1, R2]). Solutions of this cubic equation give values of deformation
parameter β at the minima of classical energy functional as three roots β0i
(i = 1, 2, 3), which are complicated and, in general, complex functions from
the total boson number Nb and model parameters χ, η.

We have performed the detailed analysis (see [R1,R2]) of the behaviour
of cubic equation roots β0i (i = 1, 2, 3) in the space of parameters (η, χ)
covering the entire extended Casten’s triangle. A special attention has been
given to regions in the vicinity of phase transition lines and critical points.
Similar analysis has been carried out also for corresponding classical energy
minimum values Ei

0 = Ei
0(Nb, χ, η; β0i).

In Fig. 1, one can discern clearly the O(6)−E(5) first order phase tran-
sition line, separating left and right sides of the extended Casten’s triangle
(with β0 > 0 and β0 < 0), as well as the triple point E(5). The roots
β01,03 are real below the X(5) − E(5) − X(5) arc line, while the root β02
is real in the entire space of Casten’s triangle. In the bottom, ”deformed
shape” part of Casten’s triangle, below the X(5) − E(5) − X(5) arc line

15



(when 0 ≤ η ≤ η(E(5))), we have three real, unequal roots. However, one of
these roots (β02) assumes nonphysically large values. In the top, ”spherical
shape” part of Casten’s triangle, above the arc line X(5)−E(5)−X(5) (when
η(E(5)) < η < 1), we have one real root (β02) assuming nonphysically large
values and two complex conjugate roots (β01, β03), just as one can expect in
the spherical shape region.

The results of our approach to the minimum problem of the classical en-
ergy functional allow one to obtain precise values of deformation parameter
β at each (η, χ) point of Casten’s triangle. In general, the qualitative con-
clusions drawn in our analysis of phase transition critical lines and points in
the case of simplified Casten’s version of IBM-1 are similar to those obtained
employing the Landau theory approach [5, 20]. However, the analytical solu-
tion of the classical energy minimum problem allows to obtain more precise
numerical values of β0, and Ecl(Nb, η, χ; β0).

Let us consider the results of the evaluation of statistical and dynam-
ical quantum chaos criteria, calculated in selected points within the (η, χ)
parameter space represented by Casten’s triangle at Nb = 8. The num-
ber assigned to each point is given in column 1 of Table 1. In the case of
Nb = 8, the triple point E(5) has coordinates ηE(5) = 0.75, and χ = 0.
Values of model parameters have been chosen in the range from below the
X(5)− E(5)−X(5) second order phase transition line Eq. (14), separating
spherical and deformed shapes, to the SU(3)−O(6)−SU(3) line (at η = 0),
corresponding to maximal deformation. Calculations have been performed
only for the prolate deformation part (χ < 0) of the extended Casten’s tri-
angle, since the solutions of IBM-1 Hamiltonian are mirror symmetric with
respect to parameter χ values.

The results of statistical quantum chaos criterion calculations show that
the simplified Casten’s version of IBM-1 at Nb = 8 is quite regular. The
deviation of nearest level spacings distribution P (S) from the Poisson form
is very slight even in the case of maximal mixing farther away from the
vertexes of Casten’s triangle (see Table 1). The area where one can regularly
evaluate both dynamical chaos criteria: κ(Φk) and W (Ψi), is approximately
from the bottom SU(3)−O(6)−SU(3) line of the extended Casten’s triangle
up to about its middle part (0 < η ≤ 0.75 ·ηE(5)), but below the second order

phase transition line X(5)−E(5)−X(5). Behaviour of dynamical quantum
chaos criteria along this phase transition line in shown in Fig. 2.

From the results presented in Table 1, one can see that, on the U(5) −
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Figure 2: Behaviour of averaged dynamical quantum chaos criteria κ(Φk)av,
and W (Ψi)av along the X(5)−E(5)−X(5) phase transition line at Nb = 8.

SU(3) line and in the area near it (with χ = 0.75 · χmax), behaviour of
κ(Φk)av and W (Ψi)av values is correlated: increasing from the middle part
(with 0.75 · ηE(5) = 0.5625) to the bottom line (η = 0). Correlation between
κ(Φk)av and W (Ψi)av values with respect to parameter χ value, when it is
changed in the direction from the X(5)− SU(3) line towards the first order
phase transition line E(5)−O(6), is lost when mixing increases.

The studies were continued by considering more complex partial versions
of IBM-1, which are obtained when one attaches to the O(6)-limit Hamilto-
nian three-boson interaction terms. Such modification allows one to describe
stable triaxial shapes in the frameworks of IBM-1. Phase transitions in the
case of O(6)-limit Hamiltonians with attached cubic quadrupole moment
operator, enabling one to describe rigid rotator SU(3)-states attached to a
γ-soft core, have been considered as well. The results of our studies have
been published in our paper [R3], and reported at the international [A3] and
local [A2] scientific conferences in 2006.

It has been shown already in [15] that, in order to obtain stable triaxial
shape, one should include into IBM-1 Hamiltonian three-boson interaction
terms. This idea has been further developed in [26, 27] where a cubic d-
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boson interaction operator H3d, containing terms with L′ = 0, 2, 3, 4, 6, has
been attached to the O(6)-limit Hamiltonian of IBM-1, and a corresponding
classical energy E3d(O(6)) expression has been obtained.

In order to study problems related with the description of stable triaxial
shapes when different L′ three-boson interaction terms are included, we have
analyzed minima of the classical energy expression with respect to quadrupole
deformation parameters β and γ employing conditions

∂E3d(O(6))

∂β
=
∂E3d(O(6))

∂γ
= 0. (18)

Analysis of the obtained results [R3] allows to make following conclusions:
1) the cubic d-boson interaction term with L′ = 0 gives no contribution

to the classical energy minimum value Emin = E3d(O(6), β0, γ0 = 30◦): total
classical energy minimum in this case coincides with that of the O(6)-limit
of IBM-1;

2) in the case of L′ = 2 term, classical energy contribution from the
cubic d-boson interaction does not depend from the asymmetry parameter
γ. Therefore, this term cannot be a cause of triaxial shape;

3) the remaining three separate cubic d-boson interaction terms with
L′ = 3, 4, 6 give energy minimum values at β0 6= 0, and γ0 = 30◦. The
same is true also for the case when one includes the sum of all terms with
L′ = 0, 2, 3, 4, 6.

Analysis of the equilibrium deformation β0 values in dependence from
the total boson number Nb, performed in the case of attached separate L′ =
0, 3, 4, 6 terms, and in the case of all three-boson interaction terms, disclosed
following features:

1) in the case of L′ = 0 term, β0 values are increasing with growing Nb

values: at Nb →∞, the total classical energy minimum is attained at β0 = 1,
i.e., one obtains the same result as in the case of pure γ-independent O(6)
limit of IBM-1 (see p.108 in [15]);

2) in the case of L′ = 3 term, the value Nb = 8, considered in [27],
turns out to be the maximal boson number, at which the energy minimum
satisfying conditions Eq.(18) is possible at used parameter values. There is
no energy minimum for boson numbers Nb > 8.

3) in the case of L′ = 4, 6 terms, and in the case of sum of all terms, β0
values are increasing until some maximal βmax0 value (at Nmax

b = 18, 12, 11,
correspondingly) is reached, then β0 decreases, i.e., β0 → 0, when Nb → ∞
at Nb > Nmax

b .
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Important conclusion, following from our studies of the classical energy
minima in the case of O(6)-limit Hamiltonian with cubic d-boson interaction,
is that, in order to study triaxial nuclear shapes, one should take into account
not just the L′ = 3 term of cubic d-boson interaction operator, the role of
which has been stressed in the literature until now (see [27, 16]), but the
L′ = 4, 6 terms as well, i.e., one should take into account the entire sum
of cubic d-boson operator terms, as it has been pointed out also in [37].
Another significant conclusion is that triaxial equilibrium shape, obtained in
the case of considered cubic d-boson interaction, is the effect due to finite
boson number.

Another approach to the accounting of three-body interactions in the
frameworks of IBM-1 has been proposed in [28]. They have considered the
O(6)-limit Hamiltonian with attached cubic O(6) quadrupole operator in-
teraction term [QQQ](0). Such model allows to describe the SU(3)-type
rigid rotator states based on the O(6)-symmetric γ-soft core, and to study,
e.g., triaxial nuclei with observed β-vibrational band. In [28], two simple
IBM-1 Hamiltonians have been proposed: 1) the H1, conserving the dy-
namical O(6)-symmetry of the original O(6)-limit Hamiltonian, and 2) the
H2, which includes the [QQQ](0) term in the form, which is O(6)-symmetry
non-conserving.

At the Nb → ∞ limit, the classical energy functionals Eir (see [28]) of
both model Hamiltonians Hi (i = 1, 2) can be presented via expression [R3]:

Eir(αδi,1 + α′δi,2, ϑ; β, γ) = ci,1
β2

1 + β2
+ ci,2

(1− β2)2δi,1 + β2δi,2
(1 + β2)2

−4ϑ

√
8

35

β3 cos(3γ)

(1 + β2)3
, (19)

where ci,1 = 4 and ci,2 = α/4, in the case of i = 1 model, and ci,1 = 1 and
ci,2 = 4α′, in the case of i = 2. Model parameters α and α′ are related
with those of the O(6)-limit of IBM-1; ϑ is a strength parameter of the cubic
[QQQ](0) interaction. Since the classical energy expression Eq. (19) includes
only the ∼ cos(3γ) dependence, that means that the inclusion of [QQQ](0)

terms allows one to obtain Eir minima only at γ0 = 0◦ or 60◦ asymmetry
angles: either prolate (β0 > 0, ϑ > 0), or oblate (β0 < 0, ϑ < 0). These
solutions are completely symmetric with respect to ϑ sign.

The application of the minima condition gives one quartic equations for
the quadrupole deformation parameter β. These equations have been ana-
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lyzed, giving special attention to regions where there are only complex roots,
corresponding to spherical nucleus.

Conditions for the prolate-oblate shape phase transition, related with the
sign conversion of parameter ϑ, one can analyze looking for relationships
β0l(α, ϑ) = −β0m(α,−ϑ) in the case of both models. Position of the triple
point where spherical and prolate-oblate deformed nuclear shapes coexist is
determined by the condition (see, e.g., [34]):

d2Eir(αδi,1 + α′δi,2, ϑ; β, γ = 0)

dβ2

∣∣∣∣
β=0

= 0. (20)

The solution of obtained equation gives triple point coordinates at (α =
4, ϑ = 0), in the case of H1 model (i = 1), and at (α′ = −1/4, ϑ = 0), in the
case of H2 model (i = 2).

Comparison of our precise analytical solution results, obtained in the
case of O(6)-symmetric model with cubic [QQQ](0) interaction, with those
of Ref. [28] shows some discrepancies. So, in our approach, the spherical
shape region forms a closed ellipsoid like figure. Opposite to it, in [28] the
spherical shape region doesn’t form a closed area. Phase transitions in the
case of O(6)-symmetry non-conserving model with [QQQ](0) interaction were
not considered in [28].

3 The study of quantum chaos in the case of

geometrical rigid triaxial rotator models

Because of their Hamiltonian structure, geometrical nuclear models are rarely
used for QPT studies at low energy and spin values. However, quantum chaos
phenomena, related to spectroscopic characteristics of various geometrical
models, especially at high angular momenta of nuclear core, have attracted
notable attention during last decade. A considerable methodological interest
for quantum chaos studies has the nuclear triaxial rotator model because its
classical analogue is a well-known integrable system.

In our studies of quantum chaos criteria, we have considered two ver-
sions of the nuclear rigid triaxial rotator model: the Davydov’s model, and
Bravin-Fedorov’s model. Most attention has been given to the calculation
and comparison of dynamical quantum chaos criteria - the wave function
entropy W (Ψi), and the fragmentation width of basis states κ(Φk). The ob-
tained results have been included in the journal paper manuscript [R4] and
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published in the proceedings of the international conference. The journal
paper manuscript presently is revised and extended including data on quan-
tum chaos statistical criteria calculations. Also, the results of our studies
have been reported at the international [A5,A8] and local [A4,A6] scientific
conferences in 2007 and 2008.

The Davidov’s rigid triaxial rotator model (see, e.g., [29, 10]) is a sim-
plest collective model which allows one to describe excited levels of even-
even nucleus having a stable triaxial deformation with asymmetry angle
γ = γeff 6= 0. In the case of rigid quadrupole deformation (β = βeff ,
γ = γeff ), one can present the collective nuclear core Hamiltonian as

HD =
1

2

3∑
j=1

I2j
sin2(γ − j 2π

3
)
, (21)

where Ij are the projections of the total nuclear angular momentum operator
I ≡ L on Descartian axes coinciding with principal directions of the nuclear
momentum of inertia. Matrix elements of Hamiltonian Eq.(21) are evaluated
in the basis formed by the axially-symmetric rotator eigenfunctions.

A more refined approach has been proposed by Bravin and Fedorov (see
[30]). Their rigid triaxial rotator model Hamiltonian expression includes the
dependence from both nuclear quadrupole deformation parameters β and γ.

Hamiltonian matrices of both triaxial rotator models have been diagonal-
ized for all even and odd spin values in the range I = 2, 3, . . . , 100, 101, i.e.,
up to maximal ranks n0(Ieven = 100) = 51, and n0(Iodd = 101) = 50, giving
energies of 2600 theoretical states: E1(I), E2(I), . . . , En0(I). The diagonal-
ization procedure has been performed at Nγ = 28 asymmetry angle values
γ = 3◦, 4◦, . . . , 30◦. In the case of Bravin-Fedorov’s model, calculations have
been performed at three fixed β values: 0.1, 0.2, and 0.3. The obtained sets
of eigenvalues and wave functions have been used for the study of statistical
and dynamical quantum chaos criteria P (S), W (Ψi), and κ(Φk).

Statistical chaos criteria - the nearest level energy spacing distributions
P(S) have been calculated in the case of maximal considered spin value I =
100, when the rank of diagonalized matrix is n0 = 51. Although the number
of eigenvalues in the unfolded spectrum at this spin value is small, if one
compares it with those at I ≥ 1000 values used in Ref. [38], one can see that
our results allow to make similar conclusion: the level spacing distribution
of the rigid triaxial rotator does not obey Poissonian statistics, as one could
expect for the classically integrable Hamiltonian.
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Table 2: Comparison of averaged wave function entropy W (Ψi)av(I) values
with the theoretically possible maximal W (Ψi)max(I) values in the case of
rigid triaxial rotator model.

Ieven Iodd n0 W (Ψi)av W (Ψi)max W (Ψi)av/W (Ψi)max
Ieven Iodd Ieven Iodd

4 7 3 0.936 0.936 1.099 0.849 0.852
6 9 4 1.047 1.095 1.386 0.755 0.790
8 11 5 1.213 1.254 1.609 0.754 0.779
10 13 6 1.398 1.462 1.792 0.780 0.816
12 15 7 1.508 1.561 1.946 0.775 0.802
14 17 8 1.602 1.659 2.079 0.771 0.798
16 19 9 1.746 1.794 2.197 0.795 0.817
18 21 10 1.811 1.854 2.303 0.786 0.805
20 23 11 1.885 1.926 2.398 0.786 0.803
22 25 12 1.979 2.022 2.485 0.796 0.814
24 27 13 2.033 2.078 2.565 0.793 0.810
26 29 14 2.090 2.143 2.639 0.792 0.812
28 31 15 2.177 2.225 2.708 0.804 0.822

Fig. 3 shows the results of P (S) calculations at different asymmetry angle
γ values. The obtained distributions have been fitted by Brody formula
Eq. (7), and the lower part of Fig. 3 presents the obtained value of Brody
coefficient ζ in dependence on γ. One can see that the chaoticity of the
system grows with asymmetry. For 18◦ ≤ γ ≤ 29◦, eigenvalues of the rigid
triaxial rotator obey Wigner statistics characteristic to GOE. Note that, at
γ = 30◦, the chaoticity of the system again is reduced. However, in order
to make more confident conclusions, one should perform P (S) distribution
studies at higher spin values.

The entropy values W (Ψi)av(I), averaged over all wave function com-
ponents at particular asymmetry angle γ, demonstrate a stable trend of
W (Ψi)av(I) growth when γ is increased up to γ = 30◦. The maximal wave
function entropy value is attained at γ = 30◦. This trend is observed both
for even and for odd spin I values, and it is not affected by some value fluc-
tuations in dependence from γ taking place in the case of separate W (Ψi)
components.

In Table 2, the averaged entropy values W (Ψi)av(I), calculated in the case
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Figure 3: Nearest level spacing distributions P(S) in dependence from asym-
metry angle γ in the case of rigid triaxial rotator model.
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of maximally mixed basis state functions Φk(I,M,K) at γ = 30◦, are com-
pared with the theoretically possible maximal entropy values W (Ψi)max(I) =
ln(n0(I)), corresponding to the case when mixed perturbed wave functions
are uniformly spread over all basis states. This comparison shows that, even
in the case of maximal mixing, W (Ψi)av(I) = (0.75 ÷ 0.85)W (Ψi)max(I).
Therefore, the intrinsic structure of Davidov’s rigid triaxial rotator model
does not allow a higher degree of chaoticity with respect to axially-symmetric
rotator eigenfunction basis.

Evaluation of another dynamical quantum chaos criterion - the fragmen-
tation width of basis states κ(Φk) is a more complicated task. Calculation of
Γspr values requires the control over the fulfillment of condition (10), imposed
on mixing amplitudes of involved states. That means that κ(Φk) values can
be evaluated only if the mixing of basis states exceeds certain limit, i.e. in
the case of large asymmetry angle values. An example of κ(Φk) criterion
calculation results at spin I = 24 one can find in Table 3. At this spin value,
the rank n0(I = 24) = 13, and one can start evaluating basis state fragmen-
tation widths at γ = 23◦. One can clearly recognize the trend of κ(Φk)av
value growth with increasing asymmetry angle γ.

It has been found that, in the case of rigid triaxial rotator models, one
can study the theoretically predicted transition from the soft chaos to the
hard chaos only starting with a comparatively high spin value (I = 50),
when the number of basis states n0 ≥26. In our calculations, we have not
observed a smooth gradual transition from the soft chaos (κ(Φk) < 1) to hard
chaos (κ(Φk) > 1). In the rigid triaxial rotator model, transition to the hard
chaos case is abrupt, and we can propose two explanations for such situation.
The first one is related with the restriction (10), which considerably limits
a number of states suitable for Γspr and κ(Φk) evaluation. The second one
follows from the tridiagonal structure of the model Hamiltonian matrix. Due
to this, the wave function mixing amplitudes are not smoothly spread over all
basis function components: their distribution is approximately Lorentzian,
which, in turn, increases the role of restriction Eq.(10) for the calculation of
κ(Φk) values.

The results obtained for the values of both criteria: W (Ψi) and κ(Φk), in
the case of Bravin-Fedorov’s model show the reducing of dynamical chaotic-
ity if quadrupole deformation β is increased, which is as expected since we
consider mixing with respect to axially-symmetric rotator basis functions.

In addition, we have performed the analysis of theoretical energy spectra,
obtained in the case of both rigid triaxial rotator models, with the aim to
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Figure 4: Transition from the rotational type spectrum to the librational type
spectrum in the case of Davydov’s rigid triaxial rotator model at I = 100
and γ = 25◦.

search for the transition from the rotational type level sequence to the libra-
tional one. Such transition in the frameworks of semi-classical description
[14] occurs at the energy value Etr = (b/2)I2, i.e., the quantum statistics
of the rigid triaxial rotator model behaves analogously to that of another
anomalous quantum system - the one-dimensional harmonic oscillator.

Characteristic maxima of energy level density ρ(Ei), and corresponding
wave function entropy W (Ψi) have been observed at Etr in dependence from
I and γ, in the case of Davydov’s model (see Fig. 4), and in dependence from
I, β, and γ, in the case of Bravin-Fedorov’s model. That agrees with the
results of [14] obtained in the case of Davydov’s rigid triaxial rotator model.

4 The study of QPT in the case of complete

IBM-1 model

It was logical to continue our studies of nuclear shape phase transitions, which
were started employing simplified versions of IBM-1, with the use of complete
IBM-1 version. Standard IBM-1 Hamiltonian, depending on six degrees of
freedom of one s-boson and five d-bosons, allows to describe complete dy-
namics of the even-even nuclear core collective excitations of the total model
symmetry group U(6) in terms of U(5), SU(3), and O(6) subgroup chains
Eq. (2). Complete IBM-1 Hamiltonian and its classical energy limit depend
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on six model parameters, therefore, in order to analyze their behaviour in
the entire model parameter space, one requires special methods. In [8], the
approach based in catastrophe theory has been proposed. Their method al-
lows to reduce the analysis of IBM-1 classical energy functional to the study
of its behaviour in the space of just two essential control parameters.

We have used the approach developed in [8] for our study of complete
IBM-1 Hamiltonian classical energy Ecl surfaces employing the method of
precise solution of minima condition equations developed in the case of sim-
plified IBM-1 versions. The results of our studies have been published in a
journal paper [R6] and reported at the international scientific conference in
2008 [A7].

Employing the catastrophe theory formalism (for details see [8]), the fol-
lowing essential control parameters are introduced:

r1 =
a3 − u0 + w

2a1 + w − a3
; r2 = − 2a2

2a1 + w − a3
, (22)

where w = ε/(Nb−1), and a1, a2, and a3 are parameters that replace six initial
two-boson interaction constants. Then, if one assumes γ = 0◦, eliminating
in such a way the γ-degree of freedom, one obtains following final expression
for the classical energy functional of complete version of IBM-1:

E0(r1, r2; β) =
1

(1 + β2)2
[
β4 + r1β

2(β2 + 2)− r2β3
]
. (23)

The classical energy functional E0(r1, r2; β) in the space of control parameters
(r1, r2) has the form of a ”swallow tail” diagram [8]. This diagram involves all
limiting cases of IBM-1 dynamical symmetries (U(5), O(6), SU(3), SU(3)).

Let us consider a solution for the classical energy minimum problem.
A corresponding equation one can obtain applying to Eq.(23) the extreme
condition. If one excludes trivial solutions by imposing conditions (1+β2)3 6=
0 and β 6= 0, one can reduce this extreme condition to a cubic equation

Aβ3 +Bβ2 + Cβ +D = 0. (24)

The three roots β0i (i = 1, 2, 3) of this cubic equation give deformation
parameter β values at which energy functional Eq.(23) has minima. The
obtained explicit expressions for these roots are very cumbersome and, in
general, complex functions of control parameters r1 and r2. The behaviour

28



Figure 5: Behaviour of the real (left panel) and imaginary (right panel) parts
of the first root β01 of Eq.(24) in the −2 ≤ r1 ≤ 2, and −2 ≤ r2 ≤ 2 range of
control parameters.

of one of these roots within parameter value ranges −2 ≤ r1 ≤ 2, and
−2 ≤ r2 ≤ 2 is shown in Fig. 5 separately for real and imaginary parts.

Main features of these roots one can analyze, analogously as it has been
done in the case of simplified IBM-1 versions, by considering values of the
cubic equation (24) discriminant D3. When D3 < 0, one has one real, and
two complex conjugated roots. If D3 > 0, there are three real, unequal roots,
while at D3 = 0 - two real, equal roots.

The D3 = 0 case with two real degenerate roots defines the second order
phase transition line between spherical and deformed nuclear shapes:(

r11
r12

)
= ∓(9r22 + 16)3/2

54r22
− 32

27r22
− 1. (25)

These solutions coincide with those given by Eqs.(3.19 a,b) of Ref. [8] where
the lines r11 and r12 define, according to the catastrophe theory, the bifur-
cation set as the locus of points in the space of control parameters (r1, r2)
at which a transition occurs from the one local minimum to another. In our
case, the r12 solution defines the arc line, separating spherical and deformed
shape areas, while the r11 solution has no such clear physical interpretation.

The triple point, where spherical and both deformed (prolate and oblate)
shapes meet, one can obtain from the critical point condition imposed on the
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second-order derivative of Eq.(23):

d2E0(r1, r2; β)

dβ2

∣∣∣∣
β=0

= 0, (26)

which gives one the coordinates of this point at r1 = r2 = 0.
In the bottom ”deformed shape” part below the r12 arc line defined by

Eq.(25), we have the D3 > 0 case with three real and unequal roots. The
numerical values for two of them: (β01, and β03), are mirror symmetric and
have opposite signs with respect to the r2 = 0 line. The second root β02 has
a close to zero value far from the r2 = 0 line in the entire (r1, r2) area on
both sides of the r12 arc line, and nonphysically large values β02 → ±∞ with
opposite signs along the entire length of the r2 = 0 line when r2 → ±0.

In the top ”spherical shape” part of the diagram we have the D3 < 0
case with two complex conjugated roots β01, β03, which are mirror-symmetric
with respect to r2 = 0 line. These roots have very small real parts and large
imaginary parts with opposite signs. The behaviour of the second real root
β02 in this area is similar to that decribed above in the D3 > 0 case.

In order to compare the results of our precise solution method for the
classical energy functional minima problem with the results obtained using
the Landau theory approach we have expanded Eq.(23) in Taylor series with
respect to deformation parameter β.

E0T (r1, r2; β) = 2r1β
2−r2β3+(1−3r1)β

4+2r2β
5+(4r1−2)β6+O(β7). (27)

If one applies extreme condition to this expression, one obtains equation for
the classical energy minimum.

In the frameworks of approach based on the Landau theory of phase
transitions, higher order terms in Eq.(27), starting with the ∼ β4 power term,
are usually disregarded (see, e.g., [20]). In order to assess the effects due to
cut-off of this expansion, we have applied extreme condition to corresponding
Taylor series including subsequently all terms up to β4, up to β5, and up to
β6. It has been found that only the inclusion of power terms up to β5

allows one to obtain a cubic equation (with the condition β 6= 0), in which
only two coefficients, those at β3 and β2, slightly differ from corresponding
coefficients in the equation Eq. (24) obtained via a precise solution method.
Analysis of the three roots of this cubic equation gives a similar picture of
phase transition critical points and lines as in the case of precise solution.
However, if one cuts off the Taylor expansion (27) at β4 or β6 power terms,
one obtains nonphysical values of corresponding roots β0i.
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5 The study of prolate-oblate shape phase

transition in the case of A ∼190 region nu-

clei

Analysis of experimental data shows that the nuclear shape phase transi-
tion in the W-Os-Pt region has a very complex nature. In fact, two parallel
transitions take place: the SU(3) − O(6) − SU(3) phase transition from
the deformed prolate shape to the oblate one, and the deformed-to-spherical
O(6)− E(5)− U(5) transition due to the nearness of the N = 126 shell clo-
sure. Therefore, one must consider the variation of IBM-1 parameters in the
entire model parameter space, not just along some selected phase transition
critical line. So, in order to obtain a realistic theoretical description for spe-
cific nuclei, we have employed the complete IBM-1 Hamiltonian presented in
multipole form Eq.(3).

Model calculations for each nucleus have been performed at boson number
Nb determined by the sum of proton hole pairs with regards to closed Z = 82
shell, and neutron hole pairs with regards to closed N = 126 shell. The
computer code PHINT [17] was used for the diagonalization of the model
Hamiltonian in order to obtain corresponding eigenvalues and eigenfunctions
in the spherical U(5) basis. The parameters of IBM-1 Hamiltonian: ε′, η, χ, κ,
and ω, have been varied in order to achieve a best possible agreement with
available experimental data [32] in the case of each selected nucleus. These
data included the energies of confidently established low-lying levels with spin
values I ≤8 (in the case of ground state band), and with I ≤6 (in the case
of other collective excitations). In such a way, the entire known low-lying
collective part of the excited level scheme has been involved for the study of
nuclear shape phase transition. Usually, only a ground state or a few lowest
levels are taken into account (see, e.g., [33]).

In order to facilitate the fit of IBM-1 model parameters, their starting
values were obtained via the least squares method solution of linear equation
systems for experimental and theoretical level energy values either in the
SU(3)-limit of axially-symmetric rotator, or in the O(6)-limit of γ-unstable
nucleus. The hexadecapole deformation term of Eq. (3) has been disregarded
assuming ξ = 0.

Since the IBM-1 Hamiltonian is symmetric with respect to the sign of the
prolate-oblate phase transition control parameter χ, we have performed our
level energy calculations at χ ≤0 values, assigning the sign of χ later with re-
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gards to the experimentally observed electromagnetic properties, and taking
into account the behaviour of model parameters in neighbouring nuclei.

The obtained values of IBM-1 parameters for all considered tungsten,
osmium, and platinum isotopes are summarized in Table 4. Agreement be-
tween experimental and calculated level energies is characterized by the mean
square deviation d =

√
(Eexp − Ecalc)2/m, where m is the number of exper-

imental levels included in the fit. One can see that the agreement which
can be achieved in the frameworks of IBM-1 improves for nuclei towards the
SU(3)-limit. In the case of O(6)-limit nuclei, the overall quality of the fit
for all involved experimental levels is notably worse, and the dependence on
χ value is more pronounced. The prolate-oblate phase transition is abrupt,
especially for osmium and tungsten nuclei.

It has been found that the employed IBM-1 version does not allow to
describe with good quality all observed low-energy levels of considered nuclei
in the vicinity of phase transition critical line E(5) − O(6). If one can suc-
cessfully reproduce the Kπ = 0+ ground state band, and the Kπ = 2+ quasi
γ-band levels, then, if one includes observed additional collective 0+ and
4+ states, they would not fit together. Again, the model parameter values,
which improve the description of these additional states, would shift the odd
spin levels of the quasi γ-band too far away from their experimental values.
Such behaviour can be explained by the complex nature of observed phase
transition taking place at different critical parameter χ values in dependence
from excitation energy, i.e., one observes a coexistence of prolate and oblate
shapes in the same nucleus (see, e.g., [39]).

Farther away from the O(6) critical point, one can successfully describe
all experimental levels up to 2.5 MeV with the same IBM-1 parameter set.
Moreover, parameter sets for neighbouring nuclei towards the SU(3)-limit
are similar, which is not the case in the vicinity of the O(6)-limit. It means
that one should be most careful when adopting for IBM model calculations
parameter values used earlier for neighboring nuclei - such approach is not
applicable for nuclei belonging to transitional deformation regions.

In the last two columns of Table 4, the values of control parameters r1
and r2, employed in the catastrophe theory analysis of nuclear shape phase
transitions are given. The use of these parameters allows one to associate
the complete IBM-1 model parameter set (ε′, η, κ, ω, ξ, χ), obtained for each
of considered nuclei, with the point within the ”swallow-tail” phase diagram,
characterizing nuclear deformation and its stability. The values of control
parameters obtained for 184 ≤ A ≤ 194 isotopes of W, Os, and Pt are
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Figure 6: The values of catastrophe theory control parameters r1, r2 obtained
for W, Os, and Pt nuclei with 184 ≤ A ≤ 194.

displayed as points in the (r1, r2) parameter space diagram (Fig. 6). One can
see that all considered nuclei belong to the domain below the r12 bifurcation
set Eq. (25) separating spherical and deformed nuclei.

Now, let us consider the Maxwell sets of points in the (r1, r2) parameter
space. At these points, classical energy surface assumes same value for two
or more different critical values of control parameter, i.e., a coexistence of
different shapes becomes possible. Maxwell sets, associated with the energy
surface minimum (r+13), and maximum (r−13) at βc=0, are defined by equation
[8]:

r±13 = −1

2
± 1

2

√
1 +

r22
2
. (28)

Another Maxwell set - for βc =
√
r1, forms a locus of points on the negative

r1 semi-axis at r2=0; this set of points coincides with the E(5)−O(6) critical
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line between prolate r2 > 0, and oblate r2 < 0 deformed shapes.
The performed study of the complete IBM-1 version classical energy func-

tional shows that it has a well defined prolate minimum (β > 0) in the region
r−13 < r1 < 0, in which the values of control parameters for all considered
184 ≤ A ≤ 194 nuclei are located. An additional oblate minimum is a saddle
point, unstable with respect to nuclear asymmetry parameter γ. It means
that at higher excitations both prolate and oblate structures are allowed, and
a possibility of such coexistence grows when r1 value approaches zero. When
β < 0, the picture is mirror symmetric with respect to r1 negative semi-axis:
one has a stable oblate minimum with a γ-unstable prolate saddle point.

As one can expect, the 184,186W nuclei are close to the stable axially-
deformed SU(3)-limit. Those of considered nuclei which have |r2| ≤ 0.2 (see
Table 4) are situated in the region where nuclear shape changes from prolate
to oblate. In in [6], it has been shown that χ is the control parameter of a
prolate-oblate phase transition with critical point at χ = 0 corresponding to
O(6)-limit. In reality, this phase transition can occur at any point on the
line connecting the E(5) triple point of the Casten’s triangle with the O(6)-
symmetry point in the middle of the line connecting maximal quadrupole
deformation points SU(3) and SU(3). We have assigned plus sign to χ
values of 192,194Pt nuclei with regard to their experimental electric quadrupole
moment Q values. The plus sign for χ value of 194Os, for which there are no
Q measurement data, is predicted from the observed dependence of r2 values
in neighbouring osmium nuclei. The obtained location of (r1, r2) points for
184,186Pt indicate that these nuclei have prolate ground state band and oblate
excited bands. With high probability, similar shape coexistence is present
also in the case of 188W.

In order to study relationships between nuclear shape phase transition
and quantum chaos in the A ∼190 region, we have performed the analysis
of statistical and dynamical quantum chaos criteria in dependence from the
SU(3) − O(6) − SU(3) phase transition control parameter χ, as well as in
terms of catastrophe theory essential control parameters r1, r2.

At first, let us consider the statistical criteria of quantum chaos - the
nearest level spacing distribution P (S). For this purpose, we have taken
all obtained IBM-1 eigenvalues with spins ranging from 0 to 8 and created
the unfolded theoretical energy spectrum for each nucleus. The results of
the fit of Brody parameter ζ in the case of all 15 considered nuclei are
presented in Table 5. Quality of the least-squares fit is characterized by
d′ =

∑m′

i=1(P (S/ < S >)− PB(S/ < S >))2, where m′ is the number of level
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Table 5: Results of the fit of nearest level spacing distributions P (S) for
184 ≤ A ≤ 194 W, Os, and Pt nuclei.

Nucleus Nb m′ < S > σ2
S ζ d′

184W 12 205 0.0252 0.0017 0.000 0.041
186W 11 169 0.0267 0.0020 0.000 0.050
188W 10 137 0.0476 0.0183 0.000 0.623
184Os 12 205 0.0265 0.0020 0.000 0.041
186Os 11 169 0.0306 0.0023 0.000 0.052
188Os 10 137 0.0453 0.0028 0.000 0.052
190Os 9 108 0.0452 0.0024 0.056 0.046
192Os 8 83 0.0474 0.0022 0.081 0.024
194Os 7 61 0.0636 0.0034 0.606 0.028
184Pt 12 205 0.0427 0.0096 0.000 0.169
186Pt 11 169 0.0396 0.0042 0.120 0.010
188Pt 10 137 0.0454 0.0029 0.000 0.033
190Pt 9 108 0.0525 0.0029 0.169 0.011
192Pt 8 83 0.0604 0.0036 0.307 0.025
194Pt 7 61 0.0696 0.0044 0.112 0.025

spacings. Additional characteristics of the P (S) distribution are the mean
value of S and its variance σ2

S. Increased mixing is indicated by the growth
of mean level spacings when one moves away from the SU(3)-limit.

One can see that the form of P (S) distribution changes very slowly from
the SU(3)-limit side: in the case of W and Os nuclei with A ≤ 188, one
cannot practically distinguish P (S) from the Poisson form. On the contrary,
in the vicinity of the E(5) − O(6) critical line, a drastic change of chaotic-
ity between neighboring isotopes is observed reflecting instability of nuclear
shape and complex nature of observed phase transition.

Statistical quantum chaos criterion P (S) characterizes distribution of
Hamiltonian eigenvalues and, therefore, it is independent from model di-
agonalization basis. Behaviour of system’s dynamical quantum chaos crite-
ria characterizes its deviation from the symmetry properties inherent to the
Hamiltonian of the chosen regular system. Wave function entropy W (Ψi),
just like fragmentation width of basis states κ(Φk), or any other dynamical
quantum chaos criterion, evaluated using wave functions of considered states,
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depends on the choice of Hamiltonian diagonalization basis. Complete IBM-1
Hamiltonian is usually diagonalized in the U(5)-symmetric basis of the five-
dimensional spherical harmonic oscillator eigenfunctions, while the prolate-
to-oblate shape phase transition is mostly analyzed in the SU(3)-symmetric
axial-rotator wave function basis (see, e.g., [6]). However, we have already
noted that, for nuclei belonging to the A ∼190 region, the O(6) critical point
should be considered rather as the E(5) − O(6) critical line with a consid-
erable influence from the deformed-to-spherical transition. Therefore, we
believe that it is justified to perform IBM-1 Hamiltonian diagonalization in
the spherical U(5)-limit basis, and to consider critical behaviour of dynamical
quantum chaos criteria from that point of view.

Fig. 7 presents the evaluated WU(5)(Ψi) values in dependence from the
SU(3) − O(6) − SU(3) phase transition control parameter χ. One can see
that WU(5)(Ψi) attains its maximal value in the SU(3)-limit and gradually
decreases towards the O(6) critical point. The slope of this dependence
increases with the boson number Nb, which corresponds to experimentally
observed picture that phase transition in the case of tungsten isotopes is
more abrupt than in the case of platinum [39].

The analysis of obtained data allows to make following conclusions:
a) maximal dynamical quantum chaos criteria values, for all 184 ≤ A ≤

194 tungsten, osmium, and platinum nuclei, except 192Pt, are obtained for
states with spin values I = 2. That differs from the case of statistical chaos,
when maximal chaoticity in all cases was observed for I = 0 states. Though,
if one considers dynamical chaos relative to corresponding Wmax(n) value,
then one obtains maximal ratio in the case of I+ = 0+

1 ground state for
nuclei in the vicinity of critical line E(5)−O(6);

b) the values of dynamical chaos criteria decrease towards E(5) − O(6)
critical line, along with the value of prolate-oblate phase transition control
parameter χ, and towards the r12 bifurcation set, along with the value of
control parameter |r1| (see Table 4). Such behaviour is characteristic to
IBM-1 wave functions evaluated in the spherical U(5) basis;

c) in the case of nuclei with SU(3)-type spectrum, maximal wave function
entropy values are obtained for I = 22 states, i.e., the Kπ = 2+ γ-vibration
band-heads, while in the case of nuclei with O(6)-type spectrum, maximal
wave function entropy values are inherent to levels of the Kπ = 0+ ground
state band;

d) in each isotope chain, the least dynamical chaos criterion values are
obtained for nuclei which are closest to the prolate-oblate shape phase tran-
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Figure 7: Values of the I = 0+ ground state wave function entropy WU(5)(Ψi)
in dependence from phase transition control parameter χ for 184 ≤ A ≤ 194
W, Os, and Pt nuclei. Solid line shows the theoretical χ-dependence for
Nb = 12 (at 184W SU(3)-limit parameters), while dashed line – for Nb = 7
(at 194Pt O(6)-limit parameters).
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sition critical line E(5)−O(6): the 188W, 190Os, and 192Pt, correspondingly.
The behaviour of quantum chaos criteria, calculated using algebraic com-

plete IBM-1 version, one can compare with that observed in the frameworks
of geometric rigid triaxial rotator models.

Wave function entropy in the case of rigid triaxial rotator model rapidly
increases towards γ = 30◦. Dependence from the quadrupole deformation
parameter β is weaker, displaying the decrease of wave function entropy for
greater β values. On the contrary, the minima of the classical energy of IBM-
1 Hamiltonian do not depend on the nuclear asymmetry angle γ value, i.e.,
the obtained energy saddle-points are γ-unstable [8]. However, it is generally
assumed that γ = 0◦ in the SU(3)-limit of prolate deformation, γ = 30◦ in
the γ-unstable O(6)-limit, and γ = 60◦ in the case of oblate SU(3)-symmetric
rotator. The O(6)-limit is the critical point both for β- and γ-deformations
[6]. Experimental data do not provide distinction between static and dynamic
nuclear triaxiality. Therefore, such comparison between IBM-1 and rigid
triaxial rotator results can take place.

However, in order to perform quantitative comparison of dynamical quan-
tum chaos criteria evaluated in the frameworks of both model approaches,
one should use IBM-1 wave functions obtained via the diagonalization of
model Hamiltonian in the axially-symmetric SU(3)-limit wave function ba-
sis, employed also for the diagonalization of geometrical rigid triaxial rotator
model Hamiltonians. Such detailed comparison is a theme for future studies.

6 Conclusions

Let us characterize fulfillment of the aims set for this dissertation work (see
Sect. 1.2) by summarizing the results obtained in our studies of nuclear shape
phase transitions and quantum chaos in the frameworks of geometrical and
algebraic models of even-even nuclei.

1. Precise analytical expressions for the classical energy functional Ecl
minima conditions in terms of nuclear quadrupole deformation parameter β
have been obtained in the case of several algebraic interacting boson model
versions:

a) the simplified two-parameter Casten’s version of IBM-1;
b) the O(6)-limit Hamiltonian with included cubic d-boson interaction;
c) the O(6)-limit Hamiltonian with included cubic quadrupole operator

term [QQQ](0) in two variants - the O(6)-symmetry conserving, and the
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O(6)-symmetry non-conserving;
d) the complete IBM-1 version.
Corresponding classical energy surfaces have been analyzed in terms of

spherical-to-deformed, and prolate-to-oblate nuclear shape phase transitions
in dependence on IBM-1 model parameter values. It has been found that:

a) the results of our approach to the minimum problem of the classical
energy functional in the case of simplified Casten’s version of IBM-1 allow one
to obtain precise values of deformation parameter β at each (η, χ) point of
Casten’s triangle. The obtained roots β0i (i = 1, 2, 3) of the cubic equation for
Ecl minima condition are complicated and, in general, complex functions from
the total boson number Nb and IBM-1 model parameters. These expressions
are well suited for the analysis of phase transition lines and critical points,
as well as for other studies involving the considered model;

b) in the case of O(6)-limit IBM-1 Hamiltonian with cubic d-boson in-
teraction term, one can obtain the minimum of Ecl expression corresponding
to stable triaxial deformation only if one takes into account the sum of all
three-boson interaction terms with moments L′ = 0, 2, 3, 4, 6, and not just
the L′ = 3 term, as it has been supposed earlier. Also, it has been shown
that this triaxial shape minimum is an effect due to finite number of bosons,
disappearing at Nb →∞;

c) in the case of O(6)-limit Hamiltonians with attached cubic [QQQ](0)

term, main attention has been given to the study of regions where Ecl expres-
sion minima condition equations have only complex roots. The boundaries
of these regions define phase transition from spherical shape to deformed
ones. Also, conditions for the prolate-oblate phase transition, as well as for
the triple point of deformations have been analyzed. Analysis has been per-
formed for both versions of the model Hamiltonian - the O(6)-symmetric,
and the O(6)-non-symmetric.

In the case of O(6)-symmetric model version, our results, obtained em-
ploying precise solution method, have shown that the spherical shape region
forms a closed ellipsoid like figure, contrary to the earlier results obtained
in Ref. [28]. The analysis of shape phase transition conditions in the case of
O(6)-non-symmetric Hamiltonian version was not given previously by other
authors;

d) the detailed analysis of minima conditions for the classical energy
functional Ecl(r1, r2; β) of complete IBM-1, performed using obtained precise
expressions for three roots β0i (i = 1, 2, 3) of the cubic equation, similar to
that in the case of simplified Casten’s version, allowed to determine coordi-
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nates for phase transition critical lines and points in the space of catastrophe
theory essential control parameters r1 and r2. Properties of the real and
imaginary parts of roots β0i have been analyzed in the ”spherical” and ”de-
formed” parts of the control space diagram;

e) the classical energy Ecl minima conditions obtained using the precise
solution method have been compared with the ones obtained employing the
approach of the Landau theory of phase transitions, in which the higher order
terms of Ecl expansion are disregarded. In the case of simplified Casten’s
version of IBM-1, the qualitative conclusions drawn in our analysis of phase
transition critical lines and points are similar to those obtained employing
the Landau theory approach. However, analytical solution of the classical
energy minimum problem allows to obtain more precise numerical values of
β0, and Ecl(Nb, η, χ; β0).

In the case of complete IBM-1 version, the effects due to accounting of
higher order terms of Ecl expansion have been assessed. It has been found
that, in order to obtain the classical energy minima condition similar to that
obtained via a precise solution method, one should take into account in such
Ecl expansion all power terms up to β5. The usual practice to consider just
∼ β2 and ∼ β3 terms can give distorted results. Therefore, if one can obtain
precise analytical solutions of equations for the classical energy functional
minimum conditions, then such approach to the study of nuclear shape phase
transitions is preferable to the use of approximate Landau theory method.

2. Statistical - the nearest level energy spacing distribution P (S), and dy-
namical - the wave function entropy W (Ψi) and fragmentation width of basis
states κ(Φk), quantum chaos criteria have been evaluated in the frameworks
of algebraic simplified Casten’s version of IBM-1, and in the case of two ge-
ometric rigid triaxial rotator models of even-even nuclei - Davydov’s model,
depending on asymmetry angle γ only, and Bravin-Fedorov’s model, depend-
ing on both quadrupole deformation parameters γ and β. Behaviour of quan-
tum chaos criteria has been analyzed both in terms of nuclear quadrupole
deformation parameters and in terms of shape phase transition control pa-
rameters in the space of Casten’s triangle. Dependence from nuclear spin and
rank of diagonalized model Hamiltonian matrix has been studied as well.

In the case of simplified Casten’s version of IBM-1, values of statistical
and dynamical quantum chaos criteria have been calculated at Nb = 8 in
selected points within the (η, χ) parameter space represented by Casten’s
triangle. Values of model parameters have been chosen in the range from
below the X(5)−E(5)−X(5) phase transition line separating spherical and
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deformed shapes to the SU(3)−O(6)−SU(3) line corresponding to maximal
deformation.

The results of quantum chaos statistical criterion calculations show that
the simplified Casten’s version of IBM-1 at Nb = 8 is quite regular. The
deviation of nearest level spacings distributions P (S) from the Poisson form
is very slight even in the case of maximal mixing farther away from the
vertexes of Casten’s triangle. At such relatively low boson numbers, P (S)
distribution is strongly influenced by the model basis cut-off which affects
the energies of higher spin states.

The results of dynamical quantum chaos criteria calculations show that,
on the U(5)− SU(3) line and in the area near it (with χ = 0.75 · χmax), the
behaviour of κ(Φk)av and W (Ψi)av values is correlated: increasing from the
middle part (with 0.75 · ηE(5) = 0.5625) to the bottom line (η = 0). The
correlation between κ(Φk)av and W (Ψi)av values with respect to parameter
χ value, when it changes in the direction from the X(5)−SU(3) line towards
the first order phase transition line E(5)−O(6), is lost when mixing increases.

The results of quantum chaos calculations in the case of Davydov’s model,
and in the case of Bravin-Fedorov’s model, performed at three different β
values, have shown that the behaviour of quantum chaos criteria in the case
of rigid triaxial rotator depends mostly on the triaxiality angle γ, the de-
pendence on β is negligible. Maximal values of dynamical quantum chaos
criteria are attained at γ = 30◦ both for even and odd spin I values. Statisti-
cal chaoticity of the rigid triaxal rotator is maximal (ζ = 1) at 18◦ ≤ γ ≤ 29◦;
system’s regularity increases again at γ = 30◦.

In the case of geometrical rigid triaxial rotator models, it has been shown
that the averaged wave function entropy values W (Ψi)av, even for maximal
mixing of basis states (at γ = 30◦), reach only about 75-85 % of the theoret-
ically possible maximal W (Ψi)max values. That indicates that the intrinsic
structure of the rigid triaxial rotator model does not allow a higher degree of
chaoticity with respect to axially-symmetric rotator eigenfunction basis. Be-
cause one has to control fulfillment of the condition (10), imposed on mixing
amplitudes of involved states, one can evaluate another dynamical quantum
chaos criterion κ(Φk) only if the mixing of basis states exceeds certain limit,
i.e., in the case of large asymmetry angle values.

The results of quantum chaos dynamical criteria calculations in the case
of Bravin-Fedorov’s model show that the values of both criteria: W (Ψi) and
κ(Φk), become smaller when the value of quadrupole deformation parameter
β is increased, which is as expected since the unperturbed system is an
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axially-symmetric rotator.
Analysis of the obtained theoretical energy spectra of rigid triaxial rotator

models allowed to observe characteristic maxima of energy level density and
wave function entropy at Etr ≈ (b/2)I2, corresponding to transition from
the rotational type level sequence to the librational one. Such transition
demonstrates [14] that quantum statistics of the rigid triaxial rotator model
behaves analogously to that of another anomalous quantum system - the
one-dimensional harmonic oscillator. This transition has been studied in
dependence from I and γ in the case of Davydov’s model, and in dependence
from I, β, and γ in the case of Bravin-Fedorov’s model.

3. A possibility to use the basis state fragmentation width κ(Φk) as the
dynamical quantum chaos criterion has been studied in the case of algebraic
Casten’s version of IBM-1, and in the case of geometrical rigid triaxial ro-
tator models. It has been shown that κ(Φk) can be successfully applied for
characterization of quantum chaos inherent to model Hamiltonian with re-
spect to chosen eigenfunction basis of unperturbed quantum system, just like
the generally used wave function entropy W (Ψi). Correlation between both
criteria has been observed in the inner regions of Casten’s triangle below the
X(5)−E(5)−X(5) second order phase transition line between spherical and
deformed shapes in the direction of the SU(3)−O(6)− SU(3) basis line.

The use of basis state fragmentation width criterion allows one to apply
additional grouping of model Hamiltonian states according to their κ(Φk)
value: separating soft quantum chaos states with κ(Φk) < 1, and hard quan-
tum chaos states with κ(Φk) > 1. Averaged κ(Φk)av values then characterize
the dynamical chaoticity of the perturbed system as a whole. It has been
found that the theoretically predicted transition from the soft chaos to the
hard chaos, in the case of rigid triaxial rotator models, can be studied only
starting with a comparatively high spin value (I = 50), when the number of
basis states n ≥26.

In our calculations, we have not observed a smooth gradual transition
from the soft chaos (κ(Φk) < 1) to hard chaos (κ(Φk) > 1), i.e., in the rigid
triaxial rotator model, transition to the hard chaos case is abrupt, which can
be explained by the tridiagonal structure of the model Hamiltonian matrix,
which increases the role of restriction Eq.(10) for the calculation of κ(Φk)
values.

4. The developed theoretical methods of quantum phase transition and
quantum chaos studies have been applied for the analysis of prolate-oblate
shape phase transition in the tungsten, osmium, and platinum isotope chains
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belonging to the transitional A ∼190 region. Nuclei of these three elements
have shapes ranging from the stable prolate axial-symmetry to the asymmet-
ric γ-unstable form.

The energies and wave functions of low-lying collective states in the case
of 15 even-even nuclei with 184 ≤ A ≤ 194 have been calculated employ-
ing complete version of IBM-1. Model parameter values for each nucleus
have been determined via the fit to all experimentally observed level energies
with I ≤ 8, in the case of ground state band, and I ≤ 6, in the case of
other collective excitations. Relationships between shape phase transitions
and quantum chaos criteria: P (S), and W (Ψi), have been analyzed: a) in
dependence on the SU(3) − O(6) − SU(3) prolate-oblate shape phase tran-
sition control parameter χ; b) in dependence on catastrophe theory control
parameters r1 and r2; c) in dependence on proton and neutron numbers Z
and N ; d) in dependence on level spin I.

A good agreement has been obtained in the case of nuclei with stable
prolate deformation, while, in the phase transition region close to the E(5)−
O(6) critical line, one cannot successfully describe, employing the same IBM-
1 model parameter set, the levels of the stretched ground state band and the
quasi γ-band together with those of excited collective 0+ and 4+ bands. That
indicates the coexistence of different shapes for the ground and excited levels
in the γ-unstable deformation region, which is due to the nearness of the
deformed-to-spherical phase transition.

It was found that the transition from prolate to oblate deformation, in the
case of low-lying collective states, occurs at A = 194 for even-even osmium
nuclei, and at A = 192 for even-even platinum nuclei. A coexistence of
prolate ground state and oblate excited states is predicted in the case of
184,186Pt, and 188W.

The evaluation of statistical chaos criteria - the nearest level spacing
distribution P (S), has shown that chaoticity slowly increases from the SU(3)-
limit side, where P (S) has Poisson form. However, in the vicinity of the
E(5)−O(6) critical line, chaoticity within isotope chain changes drastically
reflecting a complex nature of observed phase transition.

The results of dynamical quantum chaos criteria - the wave function en-
tropy WU(5)(Ψi), calculations for the 184 ≤ A ≤ 194 region W, Os, and
Pt nuclei have shown that the chaoticity with respect to spherical U(5)-
symmetric basis diminishes towards E(5)−O(6) critical line for each isotope
chain. The change is more abrupt in the case of tungsten nuclei, which is
explained by the greater stability of prolate axial deformation in the case of
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Z = 74 tungsten than in the case of Z = 78 platinum.
The results of calculations have been compared with the results of other

authors obtained in the frameworks of different theoretical approaches. A
possibility to compare the results of algebraic complete IBM-1 model with
the ones obtained using geometrical rigid triaxial rotator model has been
considered.

The studies of nuclear shape phase transitions and their relationship with
quantum chaos could be continued also in other directions, e.g.:

a) the study in the frameworks of complete IBM-1 of different shape
phase coexistence phenomena, observed in transitional region nuclei at higher
excitation energies;

b) the study of phase transitions and quantum chaos employing IBM-2
model, when isospin dependence of nucleons is taken into account;

c) the study of phase transitions in the case of odd and odd-odd nuclei
when one observes additional polarization of nuclear core due to interaction
with unpaired nucleons.

The results presented in this dissertation have been published in three
refereed journal papers [R1,R3,R6], and one paper in international conference
proceedings [R5]. One journal paper [R2] has been published in the local
scientific journal.

One journal article manuscript [R4], submitted to refereed journal in 2007,
presently is revised and extended, including additional calculation results. A
journal article manuscript [R7] about results of phase transition and quantum
chaos studies for A ∼ 190 region nuclei is submitted to journal in July, 2010.

The results of studies have been reported both at international and local
scientific conferences: eight oral presentations - international [A1,A3,A5,A7,A10],
and local [A2,A4,A6], and two poster presentations - international [A8], and
local [A9].
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