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ABSTRACT

Conductivity is a very broad term, used to describe a material's capacity to transport various objects � electrons,

holes, ions, atoms, deformations, excitations, � through itself via some mechanism. It is an intrinsic property of any

material and is a�ected by the material's composition and structure. Subtle changes in either can have a profound

impact on conductivity and understanding this causality is vital to material design.

In this thesis two multifunctional materials, cerium dioxide (CeO2) and zinc oxide (ZnO) are studied with

density functional theory (DFT) methods. Both materials are known for their response to point defects, such as the

formation of vacancies, or introduction of substitution defects: CeO2 is a model material for small polaron conduc-

tivity, which is heavily impacted by oxygen vacancy formation, while ZnO is a well-known n-type semiconductor,

with possibly untapped potential for p-type conductivity. At the root of this thesis is the development of robust,

traceable, transparent computational models for tracking changes in local structure and electronic localization, and

assessing their e�ects on the conductivities of these materials.

The work presented in this thesis shows how to build a causal link between experimentally observed data

and computed properties of CeO2 and ZnO. It is shown how to apply symmetry analysis in order to get all possible

electronic localization solutions. An example of statistical thermodynamics coupled with DFT calculations is shown

to yield predictions of dopant solubility. The ability to create experimentally grounded models such as those shown

in this thesis is an important aspect of the material design process.
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1. INTRODUCTION

1.1 General introduction and motivation

Conductivity, colloquially and broadly, is a material's innate ability to transport charge carriers. In solids specif-

ically, charge carriers can be ions, electrons, or holes (a hole is a quasiparticle associated with the absence of an

electron where it would normally be in an atom or atomic lattice). Material's dominant conducting mechanism

de�nes its utility and application limits. Thus, materials with very high electronic conductivity are best suited for

transmitting power or signals in the form of electrical �ow, materials with very low electrical conductivity are best

at separating the �ow of electrical power from places it is not supposed to reach, materials whose conductivity

depends on external conditions such as temperature or potential, are optimal for controlling the �ow of energy,

and materials with ionic conductivity mechanisms are suited for energy conversion.

Being an innate ability of the material, conductivity is a�ected by its composition and structure. For instance,

pure water does not conduct electricity, but the addition of table salt makes it conductive, and carbon nanotubes,

while having the same atomic constitution, may or may not conduct electrical current depending on their geometry

[1]. This work is devoted to predicting the behaviour of point defects from the �rst-principles calculations.

Point defects are crystallographic defects that occur only at or around a single lattice point. While crystals

are in�nitely periodical in all directions, point defects do not extend in either dimension. In this work, three types

of defects are investigated:

• vacancy defects, which are lattice sites that are normally occupied, but are empty;

• substitution defects, i.e. atoms of di�erent chemical species (impurity or a dopant) occupying a regular

lattice site;

• interstitial defects, or atoms that occupy a regular lattice position which is normally vacant.

Formation of these defects changes the distribution of electronic density and introduces distortions to the crys-

talline structure such as changes in bond lengths and atomic positions. Crucially, these changes do not propagate

inde�nitely in the crystalline structure, and as such their description can be contained to a relatively small-radius

region (in comparison to the in�nite crystal), i.e. to a local structure of the defect. This work explores point defects

and their impact on conductivity in two materials with di�erent conductivity modes and di�erent applications.

The �rst material is cerium dioxide, CeO2 (chapter 3), which is a wide-gap semiconductor, but also an

ionic conductor, whose ionic conductivity depends on the energetics of oxygen vacancy formation. This work

explores symmetry aspects of this defect and its e�ect on the material's surroundings, speci�cally, the localization

of electrons and the associated magnetic properties, and provides a theoretical background for the observed small

polaron formation. Another principal defect of interest is the cerium-substituting terbium (Tb) ion. Not only are

lanthanides known to improve electronic and ionic conductivities of CeO2 (see section 2.6), but Tb speci�cally has

very promising solubility thermodynamics (see section 3.2.5). Tb's presence drastically lowers energetics of oxygen

vacancy formation (section 3.2.6), thus improving CeO2's ionic conductivity.

Lanthanide doping generally improves performance of ceria-based materials (section 2.6). Ionic conductivity

in Ce1−cTbcO2−δ increases with Tb content, and this system's electronic conductivity (p-type) reaches noticeably

high values at 50% Tb. However, utility of some lanthanides is limited by their solubility. For instance, calculated

phase diagrams of Ce1−cGdcO2−c/2 [2, 3] show that the phase separation into Gd2O3 and CeO2 occurs below

certain transition temperature that weakly depends on Gd concentration.

Experiments on solid solutions with Tb content up to 60% [4] do not indicate a second phase formation.

On the other hand, the electron energy loss spectroscopy and transmission electron microscopy measurements [5]
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1.2. AIM AND OBJECTIVES OF THE WORK

demonstrated the formation of domains containing Tb3+ and oxygen vacancies, in the range of Tb concentration

from 0 to 50% with a secondary phase formation observed in x-ray di�raction spectra for Tb concentrations higher

than 80% [6]. Thus, understanding solubility data of Tb+4 is missing as well and may be important for the use of

Ce1�cTbcO2 for oxygen separation, because, as was observed in [7], the increase in Tb content leads to an increase

in the oxygen uptake.

The second material of interest is zinc oxide, ZnO (chapter 4), also a wide-gap semiconductor, and a very

promising material for transparent electronics, among its numerous other applications (section 2.7). This work

explores whether the presence of Ir�O complexes may cause a measurable p-type conductivity in this material, and

what are the associated structural changes when these complexes are created in ZnO.

The primary motivation for this investigation is the work by M	artin
,
² Zubkins and his colleagues [8, 9].

They have shown that ZnO thin �lms, when doped with Ir, tend to become amorphous upon reaching a critical Ir

concentration. Near this threshold, above 7 % Ir, the samples become amorphous in x-ray di�raction and EXAFS

spectra, while computationally �tted structures of EXAFS spectra show the presence of 6-coordinated iridium

ions [10]. Simultaneously, the samples start having a measurable electrical conductivity, and a sign change of the

Seebeck coe�cient is observed.

1.2 Aim and objectives of the work

The aim of this study is to explore and explain, using �rst-principles quantum chemistry calculations, the rela-

tionship between local and electronic structures of point defects in wide-gap materials such as CeO2 and ZnO, and

their conductivities�ionic, in the case of CeO2, and electronic in the case of ZnO.

The objectives of the study are

• to develop robust, valid, and experimentally grounded computational models for analysing point defects

in CeO2 and ZnO;

• to perform calculations and gather data on point defects in CeO2 and ZnO;

• to analyse the obtained data to interpret how changes in structure impact electronic distribution in the

studied materials;

• to put forward a model that explains the emergence of observed properties in the studied materials.

1.3 The scienti�c novelty of the work

The results of research presented in this thesis are of scienti�c novelty and have been published in several interna-

tional journals.

This study is among the �rst to use a site-symmetry approach to model polaronic and magnetically ordered

point defects in CeO2.

The solubility of Tb in CeO2 for the entire range of Tb concentration has been predicted for the �rst time.

It was demonstrated that the computationally cost-e�ective PBE+U approach allows for exploring the

localization of electronic defects and describing reduced lanthanide cations in a highly ionic environment.

A theoretical model for the phenomenon of emergent p-type conductivity in Ir-doped ZnO has been proposed.

1.4 Author's contribution

Data acquisition and analysis using a range of computational tools was performed by the Author at the Institute

of Solid State Physics, University of Latvia (ISSP, UL). First-principles calculations have been carried out by the

Author with the computational resources provided by LASC (Riga, Latvia), HPC centre of Max Planck Institute for

solid state research (Stuttgart, Germany), and PDC Center for High Performance Computing at KTH (Stockholm,

Sweden). Interpretation of the obtained results was performed in collaboration with the supervisor.
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2. THEORY

2.1 Crystallography fundamentals

By a textbook de�nition, a crystal is periodic structure created by in�nitely repeating identical groups of atoms

[11] across some lattice. One way to de�ne a lattice in three dimensions is by three vectors a1, a2, a3 such that the

arrangement of atoms does not change when an arbitrary point r is translated by an arbitrary integral multiple of

these vectors:

r′ = r + u1a1 + u2a2 + u3a3 (2.1)

All possible integer values of ui de�ne the set r′ , or the lattice. Equally, a crystal is invariant under any translation

T of the form

T = u1a1 + u2a2 + u3a3, (2.2)

and so are all the local physical properties of the crystal, such as the charge concentration, average electron

density, or magnetic moment density. Vectors a1, a2, a3 form the crystallographic basis of the direct lattice. These

primitive translations T form an invariant subgroup of every crystallographic space group. This group is of utmost

importance, because from it the Brillouin zone is derived, which determines crystalline energy levels.

A parallelepiped built on the vectors a1, a2, a3 is the unit cell of a crystal. The International Union of

Crystallography distinguishes in the International Tables for Crystallography [12] the unit cell, the conventional

cell, and a primitive cell.

Figure 2.1: Primitive (a) and conventional (b) cells of CeO2. Primitive cell has 1 Ce atom and 2 oxygen atoms.
Conventional cell has 4 symmetrically equivalent Ce atoms (all occupying the same Wycko� position with mul-
tiplicity 4), and 8 symmetrically equivalent O atoms (occupying a Wycko� position with multiplicity 8, di�erent
numbers are for clarity)

Figure 2.1 shows di�erence between the primitive and conventional cell using CeO2 as an example. CeO2

crystal has �uorite structure (space group No. 225, Fm3̄m, face-centred cubic lattice), and its conventional cell is

also face-centred cubic. It has 4 lattice points, and as such it has 4 Ce atoms, and 8 O atoms. The primitive cell,

on the other hand, is trigonal (sometimes called rhombohedral): each pair of its basis vectors forms a 60◦ angle,

and all vectors have the same length. Figure 2.2 shows a way for constructing a primitive cell from the CeO2's
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2.2. SUPERCELL MODEL AND SPLITTING OF WYCKOFF POSITIONS

conventional cell.

Figure 2.2: Relation between CeO2's conventional cell (with a, b, c basis) and a primitive cell (with pa, pb, pc
basis). All red spheres represent oxygen atoms, with labelled atoms belonging to the primitive cell; all other spheres
represent Ce atoms, with larger ones belonging to the primitive cell

The �nite list of all symmetry operations which leave the given point invariant taken together make up

another group, which is known as the site symmetry group of that point. By de�nition, all points with the same

site symmetry group (or a site symmetry group in the same conjugacy class) are assigned the same Wycko� position

[12]. A related but not strictly synonymous concept is that of crystallographic orbit, which is a set of all points

generated from any given point in space by action of the space group. Two crystallographic orbits of a given space

group belong to the same Wycko� position if and only if the site-symmetry groups of any two points from the

�rst and the second orbit are conjugate subgroups of the space group. By convention, each Wycko� positon of a

space group is labelled by a letter which is called the Wycko� letter. Letters closer to beginning of the alphabet

correspond to positions with higher site symmetry. In case of the group P1 the only position a is the general

position, and in the case of Pmmm the 27th position (also the general position) is assigned the letter A [12, 13].

2.2 Supercell model and splitting of Wycko� positions

Supercell model is an excellent tool for modelling point defects in crystalline solids. A point defect cannot be

introduced into the unit cell because then the concentration of the defect will be too high, at which point it will

no longer be a point defect, but an entirely new material, or some exotic phase. The concept of a supercell has

been introduced in a work by A. M. Dobrotvorskii and R. A. Evarestov [14, 15], and initially was named the

quasi-molecular large unit cell model. In a nutshell, the idea of this approach is to expand the motif, e�ectively

replacing the unit cell with a larger fragment of the crystal, corresponding to a practical concentration of the

studied defect. This larger fragment, created with the same translational symmetry as the parent crystal, is the

supercell, which, when combined with periodic boundary conditions, represents the entire crystal with its defects.

A later work by Evarestov and Smirnov [16] lists for each crystal class transformations that generate the most

symmetrical supercells with regards to both direct and inverse lattices.

Atoms of the same chemical species in the supercell are not necessarily identical by symmetry, even though

they originate from identical atoms of the unit cell. Consider an example of CeO2 (�gure 2.3). Two transformations
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2.2. SUPERCELL MODEL AND SPLITTING OF WYCKOFF POSITIONS

of its basis vectors keep the full symmetry of its space group [16], one is isotropic expansion:n 0 0

0 n 0

0 0 n

 , (2.1)

and the other is a transformation from face-centred cubic cell to primitive cubic cell with an isotropic expansion:−n n n

n −n n

n n −n

 . (2.2)

Both transformations yield cells with the same number of symmetry operations, yet divide all Ce atoms into those

with high point symmetries (in the �g. 2.3 b&c these are positions a and b, belonging to the Oh point group), and

those with low symmetry (in the same �gure, positions d and c, with point groups D2h and D4h respectively). O

atoms have a di�erent splitting pattern: in the same space group (�g. 2.3 b) oxygens are split into two groups,

each belonging to the Wycko� position f (point group C3v), while in a di�erent space group (�g. 2.3 c) all oxygens

belong to the same Wycko� position g (point group C3v).

This loss of symmetry equivalence is called splitting of symmetry orbits, and it is governed by group-subgroup

relations. Several papers by Wondratschek et al. provide mathematical foundation to this phenomenon [17, 18].

They describe a generalized case of group-subgroup relations that may occur as a result of structural changes in

crystals caused by chemical interactions or continuous phase transitions.

In the realm of supercell model, because creation of a supercell replaces the primitive crystallographic motif

with a larger one, the crystallographic pattern is distorted. By de�nition, the symmetry group of a crystal pattern

is its space group, so the symmetry group of a di�erent crystal pattern (supercell) is some subgroup of the parent

space group. Practically it means that supercells cannot have more symmetry operations than the primitive cell,

but they can have fewer symmetry operations. Consequently, since creation of a supercell can change the point

group of the space group (�gure 2.3 C), points of the new supercell can also have fewer associated symmetry

operations, and hence may be assigned new Wycko� positions.

As a result, within the supercell model, creation of a supercell may move the same atomic species to di�erent

Wycko� positions, making them symmetrically inequivalent. This has huge implications for modeling point defects,

especially substitution defects, because, if accounted for, local site symmetry in�uences the distribution of electronic

density, e�ectively allowing or disallowing certain localisation of electrons, a�ecting possible magnetic orientations,

etc. Speci�cally, results obtained in chapter 3 rely heavily on this concept.
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2.2. SUPERCELL MODEL AND SPLITTING OF WYCKOFF POSITIONS

Figure 2.3: Splitting of Wycko� positions in some CeO2 supercells.
a: primitive cell.
b: 2× 2× 2 (L8) supercell. Light green sites are high-symmetry Ce sites (Wycko� positions a and b), dark green
sites are low-symmetry Ce sites (Wycko� position d), red and blue spheres represent symmetrically inequivalent O
sites belonging to the doubly degenerate Wycko� position f.
c: mapping of the primitive cell to the conventional 1 × 1 × 1 (L1) cell, or, equivalently, mapping of the space
group No. 225 to the space group No. 221 (Fm3̄m → Pm3̄m); light green spheres are high-symmetry Ce sites
(Wycko� position a), dark green spheres are low-symmetry Ce sites (Wycko� position c), red spheres are oxygen
sites (Wycko� position g)
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2.3. BASICS OF DFT APPROXIMATION

2.3 Basics of DFT approximation

In this work, the electronic structure is calculated from �rst principles by using the fundamental Schrödinger

equation along with a set of approximations. Unless speci�ed otherwise, the principal approximation is the use

of Density Functional Theory (DFT). Dozens of books as well as every other thesis�bachelor's, master's and

doctor's,�cover theoretical foundations of DFT from every possible angle. For a brief summary, in the Kohn-

Sham (KS) formulation of DFT, the total energy is given by

EKS−DFT
tot = − 1

2

∑
i

∫
ψ∗
i (r)∇2ψi(r)d

3r non-interacting kinetic energy of electrons

−
∑
A

∫
ZA

|r−RA|
n(r)d3r electrons-nuclei attraction energy

+
1

2

∫∫
n(r)n(r′ )

|r− r′ |
d3rd3r′ classical Coulomb electron-electron repulsive energy

+ Exc �exchange-correlation energy

+
1

2

∑
A̸=B

ZAZB

|RA −RB |
nuclei-nuclei repulsion energy.

(2.1)

The orbitals ψi and the electron density n =
∑

i |ψi|2 that are used to evaluate Etot are obtained by solving

self-consistently the KS equations(
−1

2
∇2 −

∑
A

ZA

|r−RA|
+

∫
n(r′ )

|r− r′ |
d3rd3r′ + vxc(r)

)
ψi(r) = ϵiψi(r) (2.2)

The only terms in Etot and in the KS equations that are not known exactly are the exchange-correlation energy

functional Exc and potential vxc = ∂Exc/∂n(r). Therefore, the accuracy of the calculated properties depends

mainly on the approximation used for Exc and vxc.

In this text, the focus is on the practical aspects of using this approximation � as implemented in the Vienna

Ab Initio Simulation Package (vasp), and in Crystal17 by University of Torino. The principal di�erence between

these two implementations is in the way they expand the single particle wave functions. In the former, central

quantities, like the one-electron orbitals, the electronic charge density, and the local potential are expressed in

plane-wave basis sets, an idea that naturally arises when analysing wave equation of electron in a periodic potential

[11]. In Crystal17, each "crystalline orbital" (single particle wave function) is expanded as a linear combination

of Bloch functions de�ned in terms of local functions (or atomic orbitals), which, in turn, are linear combinations

of Gaussian type functions [19].

2.4 Theoretical background of vasp calculations

In vasp, central quantities, like the one-electron orbitals, the electronic charge density, and the local potential are

expressed in plane-wave basis sets. The interactions between the electrons and ions are described using norm-

conserving or ultrasoft pseudopotentials, or the projector-augmented-wave method. According to its manual,

vasp is a complex package for performing ab-initio quantum-mechanical molecular dynamics (MD) simulations.

The approach implemented in vasp is based on the (�nite-temperature) approximation with the free energy as

variational quantity and an exact evaluation of the instantaneous electronic ground state at each MD time step.

vasp uses e�cient matrix diagonalisation schemes and an e�cient Pulay/Broyden charge density mixing. Forces

and the full stress tensor can be calculated with vasp and used to relax atoms into their instantaneous ground-state.

2.4.1 Electronic groundstate in vasp

Most of the algorithms implemented in vasp use an iterative matrix-diagonalization scheme: the used algorithms

are based on the conjugate gradient scheme [20, 21], block Davidson scheme [22], or a residual minimization scheme
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2.5. THEORETICAL BACKGROUND OF CRYSTAL CALCULATIONS

� direct inversion in the iterative subspace (RMM-DIIS) [23, 24]. For the mixing of the charge density an e�cient

Broyden/Pulay mixing scheme[24, 25] is used by default, although other approaches are also available. Input charge

density (ρin) and wavefunctions (ϕn) are independent quantities (at start-up of a calculation these quantities are

set according to user settings, with initial KS orbitals being random (unless precomputed ones are available), and

with initial charge density being a superposition of atomic charge densities, unless a precomputed one is available).

Within each selfconsistency loop the charge density is used to set up the Hamiltonian, then the wavefunctions are

optimized iteratively so that they get closer to the exact wavefunctions of this Hamiltonian. From the optimized

wavefunctions a new charge density is calculated, which is then mixed with the old input-charge density.

The accuracy of calculation in general is controlled by several parameters: the maximal kinetic energy of

plane wave included in the basis set (largely depends on the pseudopotentials used); grid sizes used for representation

of the pseudo orbitals and for localized augmentation charges (in more precise calculations, those are two separate

grids de�ned along lattice vectors, with the augmentation grid being much �ner); and by accuracy of projector's

representation in real space (the number of grid points within the integration sphere around each ion). The

precision of calculation is determined by the self-consistency loop, which is broken when either consistency is

reached (relaxation of the electronic degrees of freedom stops if the total energy change and the band-structure-

energy change between two steps are both smaller than a speci�ed threshold), or when a speci�ed number of SCF

cycles has passed.

2.5 Theoretical background of crystal calculations

In crystal, each �crystalline orbital� (CO, a single particle wave function) is expanded as a linear combination of

Bloch functions:

ψi(r;k) =
∑
µ

aµ,i(k)ϕµ(r;k), (2.1)

de�ned in terms of local functions (or atomic orbitals, AO):

ϕµ(r;k) =
∑
g

φµ(r−Aµ − g) eik·g. (2.2)

AOs, in turn, are linear combinations of Gaussian type functions (GTF, see below). This approximation

is inspired by the Slater-type orbitals (which are analytical solutions of the stationary Schrödinger equation of

hydrogen-like atoms), but uses GTFs, which ensures that a two-centre distribution can be replaced by a one-

centre distribution, simplifying integration. Although combination of GTFs increases the number of functions and

integrals in the calculation, the integrals involving Gaussian functions are quicker to compute than Slater-type

orbitals, so there is a net gain in the e�ciency of the calculation.

2.5.1 Construction of atomic orbitals in crystal

Eqs 2.1 and 2.2 show how crystal constructs COs from AOs. The latter are expressed as linear combination of a

certain number of Gaussian type functions (GTF):

φµ(r−Aµ − g) =

nG∑
j

dj G(αj ; r−Aµ − g), (2.3)

where the sum over µ is limited to the number of basis functions; A is the centre (de�ned by atomic coordinates),

r is the coordinate of an electron, g is the direct lattice vector (the sum over g in eq. 2.2 is extended to all lattice

vectors of (periodic) direct lattice), k is lattice vector de�ning a point in the reciprocal lattice. Coe�cients a, d

and α are constants de�ned in the basis set. Coe�cients a (eq. 2.1) are variational coe�cients for multiplying

Bloch functions; d are coe�cients of the primitive gaussians in the contraction, �xed for a given basis set (the

sum over j is limited to the number of functions in the contraction), and α are the exponents. Large values of α
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2.5. THEORETICAL BACKGROUND OF CRYSTAL CALCULATIONS

are used to construct narrow GTOs (in the limit of in�nite α a GTO approximates the Dirac delta function), i.e.

it restricts electron to a small region around the centre (atomic nucleus), while small values of α generate di�use

(spread out) functions, and can describe electrons in chemical bonds (far from the nucleus).

The AOs belonging to a given atom are grouped into shells. The shell can contain either all AOs with the

same quantum numbers, n and l (for instance 3s, 2p, 3d shells), or all the AOs with the same principal quantum

number n and di�erent l (sp shells; exponents of s and p gaussians are the same, but their coe�cients are di�erent).

Each shell, depending on its type, and regardless of n, is used to generate a �xed number of AOs: s shells

generate 1 AO, sp � 4 AOs, p � 3, d � 5, and f � 7. The formal shell electronic charge is the number of electrons

attributed to each shell as initial electronic con�guration. The electronic con�guration of the atoms is used in

the calculation of the atomic wave function only (and only when the guess for SCF is a superposition of atomic

densities). The formal charge may correspond to a neutral atom or to an ion.

2.5.2 Boltzmann transport equation in crystal

With crystal it is possible to post-process DFT wavefunctions for evaluating the electron transport properties by

solving the Boltzmann equation in the relaxation time approximation. Classically, it has the following form [11]:

∂f

∂t
+ α · gradvf + v · gradrf = −f − f0

τ
, (2.4)

where r are Cartesian coordinates, v is velocity, α is acceleration dv/dt, f(r, v) is a distribution function, such that

f(r, v)drdv = number of particles in drdv,

τ(r, v) is relaxation time, de�ned by the equation(
∂f

∂t

)
coll

= −(f − f0)/τ, (2.5)

where f0 is the distribution function in thermal equilibrium.

Solution of the classical Boltzmann transport equation provides the classical distribution function that

describes positions and velocities of classical particles. In crystal, the semiclassical Boltzmann transport theory

is used. Solution of the semiclassical transport equation yields a distribution function that describes electrons in

an energy band. From the distribution function macroscopic quantities of interest, such as Seebeck coe�cient and

electronic conductivity, are derived [26].

At the core of the equations coded into crystal for obtaining transport coe�cients is the transport distri-

bution function, cast as the energy projected tensor:

Ξqr(E) = τ
∑
k

1

Nk

1

V

∑
i,j

vi,q(k)δ(E − Ei(k)), (2.6)

whereNk is the number of k -points used in sampling the reciprocal space, vi,q(k) is the velocity of the ith (jth) band,

calculated along the direction q(r), and de�ned as the derivative of the band energies E(i,k) w.r.t. a reciprocal

space vector kq:

vi,q(k) =
∂Ei(k)

∂kq
. (2.7)

In eq. 2.6, δ is an approximation to Dirac's delta function, and τ is the electronic relaxation time, which

is assumed to be not dependent on k (constant relaxation time approximation). Relaxation time is temperature-

dependent and cannot be obtained from �rst-principles calculations, and, therefore, must be either �tted or obtained
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2.6. CERIUM DIOXIDE

experimentally [19, 27].

By integrating conductivity distributions written with tensors of eq. 2.6, it is possible for crystal to obtain

conductivity tensors, for instance, the electrical conductivity σ:

σqr(T ;µ) = e2
∫
dE

(
−∂f0
∂E

)
Ξqr(E), (2.8)

where µ is the chemical potential or Fermi level, E is the energy, f0 is the Fermi-Dirac distribution, and T is the

temperature. Thermoelectric coe�cient σS, where S is the Seebeck coe�cient, is cast as:

[σS]qr(T ;µ) =
e

T

∫
dE

(
∂f0
∂E

)
(E − µ)Ξqr(E). (2.9)

From eqs 2.9 and 2.8, the Seebeck coe�cient is then calculated for each value of µ. Computationally, precision

of these calculations is determined, mainly, by the pre-computed wavefunctions. Accuracy depends on the density

of k-points: too few points results in sparse evaluation of vi,q(k), which yields a coarse transport distribution

function.

2.6 Cerium dioxide

Cerium dioxide (CeO2, ceria) is a material whose utility stems from its ionic and polaronic conductivities. Thus,

it is not surprising that the polaron properties of ceria were the subject of numerous experimental and theoretical

studies [28�32]. The applications based on these properties of CeO2 include the use of it as an electrolyte in solid

oxide fuel cells [33], membranes for oxygen separation [34, 35], oxygen sensors [35, 36], it has a high electrostriction

coe�cient, making it useful in micro-electro-mechanics and other electromechanical applications [37, 38], and it is

a well-known catalyst [39]. This work focuses on interaction between oxygen vacancies and the lattice of CeO2,

including other point defects that may be present in the material.

Usually,CeO2 exists in a �uorite structure (space group No. 225, Fm3̄m, face-centred cubic lattice) with

Ce+4 occupying a high-symmetry position, neighboured by eight O2� ions. Pure ceria has a characteristically low

small polaron conductivity [40]. In this material, polarons are created when electrons re-localize to distinct Ce+3

ions, a�ected by formation of oxygen vacancies.

Conductivity of ceria is improved when CeO2 is doped with lanthanide ions. For example, Gd- or Tb-doped

CeO2 demonstrates higher electrical conductivity relative to undoped samples [41, 42]. Trivalent rare earth dopants,

e.g. Gd+3, Sm+3, and Pr+3 promote oxygen vacancy formation and, thus, enable ionic conductivity [43�47].

Tb ions are particularly e�ective enhancers of ionic conductivity, therefore ceria doped with Tb is a prospec-

tive material for mixed-conductive membranes for oxygen separation; in addition, this material is distinguished by

fast transport of oxygen ions, favourable redox catalytic properties and pronounced chemical compatibility with

water and carbon dioxide at high temperatures [34, 48]. In contrast to other trivalent dopants, speci�cally, Gd+3

with limited solubility in ceria [2], Tb is much more compatible with the lattice of CeO2, which results in much

better solubility (section 3.2.5).

2.7 Zinc oxide

Zinc oxide (ZnO) is a multi-functional material. Despite more than two decades of intensive research, the capabilities

of ZnO are still not exhausted, and new insights for materials science can still be learned by studying this compound

and its defects. The form of ZnO is no less versatile than its function: zinc oxide can be grown as large single

crystals of high purity, deposited as thin �lms, or made amorphous [49�51]. It has a 3.4 eV wide band gap, strong

room temperature luminescence, high electron mobility, high thermal conductivity and large exciton binding energy

[52].
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This material has found uses in a large variety of applications, including but not limited to: thin �lm

transistors, solar cells, diodes, displays [53�56], transparent conductors, sensors/emitters of blue and UV light, and

to functional coatings [52, 57]; ZnO also has pigmental, (photo) catalytic, piezoelectric, antibacterial, and varistor

properties [58�60] that are being explored for their application across many �elds of industry.

A shared fundamental aspect for these application is the fact that creating an n-type semiconductor from

ZnO is a relatively straightforward task because, among its intrinsic defects, oxygen vacancies are the most stable

[61�64]. This, combined with its large band gap, electron mobility, and dopant-induced n-type conductivity [65�67]

make it a very good material for transparent electronics.

Still novel applications emerge in various domains but they often require the preliminary stabilization of a

p-type ZnO counterpart to the natural n-type ZnO to be stimulated. Obtaining p-type ZnO thin �lms would be

an important milestone in transparent electronics, allowing the production of wide band gap p�n homo-junctions

[68�70], opening doors to revolutionary technologies in light emitting diodes, lasers, etc. [57, 71, 72]. Unfortunately

the lack of p-type ZnO slows down the launch of this promising new market activity.

Because of its considerable technological interest, a lot of research was made on the formation of local and

extended defects in ZnO that might be able to produce p-type conductivity [58, 73]. In summary, all experiments

and �rst-principle calculations carried out on ZnO bulk agree that large amount of Zn vacancies, an intrinsic p-type

defect, are di�cult to stabilize [74�76], even though such defects and their complexes are expected to play a pivotal

role in the generation of p-type charge carriers [73].

At the same time, p-type doping in ZnO thin �lms is hindered by a self-compensation e�ect from native

donor defects (VO and Zni) and/or hydrogen incorporation and mostly requires elevated growth temperatures [77].

The conductivity of p-type ZnO thin �lms is substantially lower compared to n-type ZnO. The cause of lower

conductivity is the large e�ective mass and thus the low mobility of the holes in the valence band, which is mainly

composed of p-orbital levels of oxygen. A new approach to obtain p-type ZnO instead of doping is to produce a

signi�cant number of Zn vacancies and their complexes in order to generate p-type charge carriers [78, 79].

Among other di�culties related to achieving p-type conductivity through doping, is a strange behaviour of

oxygen-substituting nitrogen. Extensive theoretical investigations clearly stipulate that nitrogen, that is considered

so far as the most natural substituent for oxygen to trigger the appearance of p-typeness in ZnO, cannot lead to

p-type conductivity at ambient conditions because of too deep acceptor levels [52, 80�82]. These assertions clearly

point out the recurring problem in engendering p-type ZnO in a reproducible way. In that context, a recent discovery

of nitrogen-doped zinc-de�cient ZnO nanoparticles that clearly exhibit p-type properties for periods longer than 2

years and half on samples stored at ambient conditions is very surprising [83].

As a result of advances in growing methods, current research on p-type conductivity in ZnO-related topics

is shifting towards complex materials such as In-Ga-Zn-O thin �lms [84�88], In-Zn-Sn-O [89], mixes of oxides or

spinels [73, 90�92], and to amorphous phases of ZnO and related materials [67, 70, 93�96].
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3. THE CASE OF CERIUM DIOXIDE

3.1 Oxygen vacancy in undoped CeO2

In this work the investigated system is reduced ceria, i.e. cerium dioxide with oxygen vacancies. To model this

system, a supercell of CeO2 is created, from which one oxygen atom is then extracted, together with its 8 electrons.

Ce ions adjacent to the vacancy become reduced (they no longer have to share some of their electrons with the

extracted oxygen, so they gain them back). This work explores how relaxation of such system with DFT methods

depends on the choice of supercell (local symmetry of the defect), and which mode of electronic (de)localization is

more probable in such system.

Small polaron conductivity is typical for undoped CeO2 [40, 97]. Ceria intrinsically forms oxygen vacancies

that are modelled here as positively charged w.r.t. undisturbed system (a region of space where an oxygen atom

used to be, when vacant, has a lower electronic density), and, to compensate this charge, Ce3+ ions are formed.

3.1.1 Supercell selection

An argument stated in section 2.2 poses that by varying the size of a supercell one can obtain cells with symmet-

rically di�erent positions originating from the same source (the so called Wycko� positions' splitting). It follows

then, that for any given material there are electronic solutions incompatible with the space group symmetry, e.g.

if all metal ions in a cell are symmetrically equivalent, an antiferromagnetic alignment of their electronic spins will

have to break this symmetry.

Because introduction of a point defect nulli�es the �inner� translations of the supercell (combinations of the

host crystal primitive translations), the point group of the defective crystal is de�ned by the site symmetry group

of the defect. Fig. 3.1 illustrates this point with a 96-atom supercell of CeO2, created with eq. 2.2, where n = 2.

Figure 3.1: Distribution of symmetry orbits in a 96-atom CeO2 supercell. Cationic sites are labelled. Colours and
labels represent orbits of the same symmetry, see text and tables 3.1 � 3.2
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3.1. OXYGEN VACANCY IN UNDOPED CEO2

If all atoms belonging to the same symmetry orbit (same colour) are substituted with a di�erent atomic

species, the entire symmetry of the supercell remains intact, including �inner� translations that exist only within

this symmetry orbit and do not coincide with lattice translations. However, if the substitution is partial, changing

only some atoms in the orbit, then the �inner� translations are violated and the number of symmetry operations is

reduced. In e�ect, all possible symmetry-compatible solutions to electron localization depend on the choice of the

defect placement.

In the following sections, a symbol LV (A) will be used to identify supercells. L marks the type of Lattice (F

for face-centred cubic, P for primitive), V is Volume expansion factor (determinant of the transformation matrix,

the number of unit cells in a supercell), and A is Atom count. For instance, F64(192) means �a face-centred cubic

supercell consisting of 64 unit cells, totalling 192 atoms�. It also means that eq. 2.1 with n = 4 was used to create

this supercell. P32(96) means a supercell created with eq. 2.2, where n = 2.

Using the program WYCKSPLIT [98] of the Bilbao Crystallographic Server1 [99], it is possible to identify

all symmetry-allowed splittings of Wycko� positions. Tables 3.1 and 3.2 list distribution of oxygen and cerium

atoms over the symmetry orbits for reasonably small supercells (under 200 atoms).

Table 3.1: Oxygen site symmetry in di�erent supercells
F1(3) F8(24) F27(81) F64(192) P1(12) P32(96)

Td (S24)i 2× C3v (S6) Cs (S2);
C2v (S4);
2× C3v (S6);
Td (S24)

4× Cs (S2);
4× C3v (S6)

C3v (S6) 2× Cs (S2);
2× C3v (S6)

i. SN is the number of point symmetry operations in a given orbit in the supercell

Table 3.2: Cerium site symmetry in di�erent supercells
F1(3) F8(24) F27(81) F64(192) P1(12) P32(96)

Oh (S48) D2h (S8);
2×Oh (S48)

C2v (S4);
C3v (S6);
C4v (S8);
Oh (S48)

Cs (S2);
2× C2v (S4);
D2h (S8);
C4v (S8);
Td (S24);
2×Oh (S48)

D4h (S16);
Oh (S48)

2× C2v (S4);
2×D4h (S16);
2×Oh (S48)

Based on this initial symmetry assessment for the purpose of modelling oxygen vacancy, not only is F27(81)

the smallest supercell with a low-symmetry Cs position, it is also the most inclusive supercell, representing all

possible point symmetries an oxygen position can have. Therefore, this supercell has been used in all the following

calculations. As an additional note, Cs is the lowest-symmetry point group of the Fm3̄m space group, which

further solidi�es the choice of F27(81).

3.1.2 Computational details

All calculations were made using crystal [19]. Tolerance factors of 8, 8, 8, 8, and 20 for the Coulomb and exchange

integrals were used. The SCF convergence threshold for the total electron energy was set to 10−9 Hartree, and the

threshold for change in energy between consecutive geometry optimization steps was set to 10−8 Hartree.

Two hybrid exchange-correlation functionals were tested: PBE0 [100] and HSE06 [101, 102]. Hybrid DFT

functionals with the selected basis sets generally outperform LDA and GGA(+U) functionals, yielding results that

are, on average, more consistent with experimentally observed properties of CeO2. Both functionals reproduce

basic properties of bulk ceria reasonably well, and, while HSE06 better reproduces the band gap of this material

1https://www.cryst.ehu.es
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3.1. OXYGEN VACANCY IN UNDOPED CEO2

in comparison to PBE0, the latter is computationally less demanding, and produces more accurate vibrational fre-

quencies. For these reasons the calculations for F27(81) supercells with oxygen vacancy were performed exclusively

with PBE0 functional.

All calculations of defective cells were spin-polarized. The reciprocal space was sampled with Monkhorst-

Pack [103] k -point grids of varying densities: 2 × 2 × 2 for all calculations of the F27(81) supercell; 3 × 3 × 3 for

calculations of the primitive cell, and 32× 32× 32 for calculating elastic constants with the primitive cell.

Basis sets were adopted from literature. Oxygen atoms were represented with a basis set taken from Bredow

et al. [104], and for Ce atoms a basis with quasi-relativistic e�ective-core pseudopotential with 28 core and 30

valence electrons was adopted from [105]. Prior to the main calculations both basis sets were partially modi�ed

using the program OPTBAS [106] and HSE06 functional.

Oxygen vacancies were introduced in supercells by removing oxygen atoms from various lattice positions.

Oxygen-rich conditions were assumed, as these are the operational conditions that CeO2 is subject to as electrolyte

in solid oxide fuel cells and in oxygen-separating membranes, and it is under these conditions that bulk di�usion

of oxide ions is rate limiting. Therefore, formation energy of a V +2
O in a neutral supercell was calculated as

EF = E
V +2
O

tot − Ep
tot + µO, (3.1)

where superscripts p and V +2
O respectively denote a perfect supercell, and a supercell with one oxygen vacancy;

EX
tot is the total electron energy, and µO is the chemical potential of an oxygen atom, calculated as half of the total

electron energy of a O2 molecule.

3.1.3 Oxygen vacancies and electronic localization

Normally, cerium dioxide is ionic enough to safely assume that all Ce ions, having donated all their outer shell

electrons (4f15d16s2), are in the 4+ oxidation state, and all oxygen ions are 2�. Therefore, creation of an oxygen

vacancy by removing an oxygen atom from the supercell together with its own valence electrons, leaves behind

the two donated electrons that tend to localize in the conduction sub-band formed by Ce's 4f orbitals. One way

of modelling experimentally observed formation of small polarons [40] is to consider the four Ce ions which are

nearest neighbours to an oxygen vacancy, and to compare di�erent modes of electronic localization over these ions.

In the text below, electrons' localization over two neighbouring Ce ions will be considered as representation of a

small polaron, and localization over three and more Ce ions�a large polaron, for such localization, together with

atomic displacements w.r.t. their original positions, exceeds the boundaries of CeO2 primitive cell, even though it

is still con�ned to the supercell.

Table 3.3 presents all possible2 con�gurations of these localizations. The �rst column names the site symme-

try of the removed oxygen ion, and categorizes symmetry equivalence of the neighbouring Ce ions. For instance, the

label Cs(S2)/(Ce1,Ce2)(Ce3)(Ce4) means that an oxygen vacancy at a Cs site that has two symmetry operations,

is surrounded by three distinct groups of Ce ions, one of which has two symmetrically equivalent ce ions (Ce1 and

Ce2). Label C3v(S6)/(Ce1)(Ce2,Ce3,Ce4) marks an oxygen vacancy at a C3v site with 6 symmetry operations,

surrounded by two groups of Ce ions, one of which has three symmetrically equivalent Ce's. For each allowed

magnetic con�guration, all symmetrically equivalent Ce ions must have the same spin projection, either 1/2, −1/2,

or 0.

Columns 2-4 of table 3.3 describe the magnetic properties of each solution. Second column lists the total

projected spin (Sz) for each starting magnetic con�guration, as well as the distribution of electrons: '+' marks

a Ce ion with a non-zero net magnetic moment (some degree of electronic localization), and '�' marks a Ce ion

without an associated magnetic moment. In the 3rd column, N is the number of displaced Ce ions with a non-zero

2Computationally viable, see text below
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3.1. OXYGEN VACANCY IN UNDOPED CEO2

magnetic moment. The next column lists values of the magnetic moments (µ) of these ions after relaxation (signs

denote spin orientation).

Columns 5-6 list bond lengths between displaced Ce ions and their closest O [d(Ce�O)], and relative displace-

ments of all V +2
O -encircling Ce ions with respect to their distances in a perfect crystal (positive sign of ∆d(Ce�Ce)

means an outward motion). For N = 2 (S2 and S4) there are 3 values: the change in distance between the Ce ions

closest to the V +2
O , the change of distance between the other two Ce ions, and the change of distance between these

two pairs of ions. For N = 3 (S2) these three values are: distance change in the closest pair, distance change for

the next closest ion, and distance change between Ce with non-zero µ, same as for N = 4 (S4), except all values

refer to pairs of ions. For S6 two values are given: changes of distances between the three equivalent ions, and the

distance change between the other ion and the three equivalent ones. For S24 there is only one value, the distance

change between the 4 equivalent ions.

Formation energies according to eq. 3.1 are in the 7th column, and are given with respect to solution with

the lowest energy (�rst row of the table, Cs(S2) with Sz = 0, and EF = 4.10 eV). The last column lists volumes of

the relaxed supercells.

Table 3.3 clearly demonstrates that exploiting symmetry is necessary for exploring all possible magnetic

con�gurations. At the time of publishing [107], this has been a novel approach to modelling point defects in

symmetric supercells. Another symmetry-related conclusion is that symmetry reduction is necessary to obtain

a solution with the lowest energy: the highest vacancy formation energies correspond to the most symmetrical

solutions, where the two leftover electrons are delocalized over the four neighbouring Ce cations, forming a large

polaron.

In contrast, for symmetry con�gurations with 2 Ce ions neither of which is symmetrically equivalent to either

of two remaining cations, it is possible to obtain a small polaron, with vacancy electrons localizing on 2 Ce cations.

Three such solutions that are listed in table 3.3 as Cs(S2) with Sz = 0, Cs(S2) with Sz = 1, and C2v(S4) with

Sz = 1, have low vacancy formation energies, with the �rst one, corresponding to opposite-spin solution, being

the lowest. Crucially, the opposite-spin solution is only available for the Cs(S2) con�guration, in which the 4 Ce

atoms are split into 3 symmetry orbits. Small energy di�erences between spin-aligned and opposite-spin solutions

are consistent with previous results [31].

Structural changes are consistent across the entirety of results: Ce ions move away from the vacancy and

closer to the other O ions, while volume of the supercell increases, with largest expansion corresponding to small

polaron-like solutions. This result corresponds well to experimental data: Marrocchelli et al. [108, 109] has

attributed volume increase in CeO2 to chemical expansion caused by larger cation size of reduced Ce ions.

Results presented in this section are published in [A1] . The author has performed basis optimisation

calculations for Ce and O, calculations of CeO2 (both with- and without oxygen vacancy), has gathered the data

and has contributed his writing to the paper.
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Table 3.3: All magnetic con�gurations allowed by point symmetries in the F27(81) supercell
Site symmetry/
symmetry equivalence
of Ce atoms

Spin projection
(Sz)

N µ, µB d(Ce�O)i,
Å

∆d(Ce�Ce)ii,
Å

∆EF
iii,

meV
Volumeiv,

Å3

Cs(S2)/
(Ce1,Ce2)(Ce3)(Ce4)

0
(�,�)(+)(+)

2 0.96
-0.96

2× 2.30 0.17
0.23
0.30

0 1068.07

1/2
(+,+)(�)(+)

3 2×−0.49
0.96

2× 2.24
2.30

0.20
0.22
0.20

306 1067.47

1
(�,�)(+)(+)

2 2× 0.96 2× 2.30 0.17
0.23
0.30

0.2 1068.06

3/2
(+,+)(�)(+)

3 2× 0.50
0.96

2.25
2.25
2.31

0.21
0.23
0.21

338 1067.27

C2v(S4)/
(Ce1,Ce2)(Ce3,Ce4)

0
(+,+)(+,+)

4 2×+0.49
2×−0.49

2× 2.25 0.22
0.22
0.23

610 1066.56

1
(�,�)(+,+)

2 2× 0.96 2× 2.30 0.17
0.23
0.30

0.2 1068.08

2
(+,+)(+,+)

4 4× 0.49 4× 2.25 0.22
0.22
0.23

611 1066.50

C3v(S6)/
(Ce1)(Ce2,Ce3,Ce4)

1
(+)(+,+,+)

4 -0.95
3× 0.35

2.30
3× 2.23

0.21
0.24

432 1066.67

3/2
(�)(+,+,+)

3 3× 0.65 3× 2.27 0.22
0.26

396 1067.82

2
(+)(+,+,+)

4 0.97
3× 0.35

2.30
3× 2.23

0.21
0.24

431 1066.82

Td(S24)/
(Ce1,Ce2,Ce3,Ce4)

2
(+,+,+,+)

4 4× 0.49 4× 2.24 0.25 768 1066.71

i. 2.34 Å in the perfect crystal
ii. 3.82 Å in the perfect crystal
iii. As calculated by eq. 3.1, w.r.t. the �rst row of this table with EF = 4.10 eV
iv. 1059.19 Å3 for the perfect crystal
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3.2 Tb in CeO2

3.2.1 Supercell selection

Four structures were used to analyse Tb solubility in CeO2: two unit cells for the cases of pure CeO2 and TbO2

in �uorite structure, representing a +4 oxidation state of either ion. The other two are superstructures (ordered

solid solutions), representing two di�erent (absolutely ordered) Tb distribution modes at 50% substitution. The

�rst superstructure is a primitive cell, P1(12), with Tb layers ordered in the [001] direction, �g. 3.2(a). The second

superstructure is a 8-fold isotropic expansion of the face-centred cubic cell, F8(24), with Tb layers ordered in the

[111] direction, �g. 3.2(b).

Figure 3.2: Two superstructures, representing di�erent orderings in Ce0.5Tb0.5O2 solutions, corresponding to (a):
P1(12), and (b): F8(24) supercells, adopted from [110]

A detailed analysis of Tb properties in CeO2 matrix, including Tb's e�ect on oxygen vacancy formation

and the associated electronic localization, was performed using a 96-atom supercell P32(96). The choice of this

supercell is motivated by a balance between reasonable concentration (ca. 3 at.%), relatively small size, and a good

variety of sites for Tb placement, see tables 3.1 and 3.2.

3.2.2 Computational details

At the time of conducting this research, no reliable, un-ionized, gaussian-type orbital basis set was available for Tb,

therefore, a plane-wave basis set was used in this part of the study. DFT calculations were performed using vasp

5 with PBE PAW potentials generated by Georg Kresse, following methods suggested by Peter Blöchl [111, 112].

PBE exchange-correlation functional [102] was used with an on site +U correction, as formulated by Dudarev et

al. [113]. U values were chosen based on available data in literature: for Ce 4f electrons, U=5.0 was used [31, 114],

while U=6.0 was applied to Tb 4f electrons [115]. Both values were applied simultaneously. Plane-wave cuto�

energy was set to 520 eV, all calculations were spin-polarized, convergence threshold for di�erence in total energy

was set to 10−6 eV. Integration in the reciprocal space was done using the following Γ-centred Monkhorst-Pack

meshes of k-points: 4 × 4 × 4 for primitive cells and P1(12) supercell (�g. 3.2(a)), 3 × 3 × 3 for F8(24) supercell

(�g. 3.2(b)), and 2× 2× 2 for P32(96) supercell. Charges of ions were calculated using Bader's space-partitioning

scheme [116, 117].
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3.2.3 The method of concentration waves

To use DFT results in the analysis of the relative stability of phases at T ̸= 0 K, Concentration Waves method

(CW), as formulated in refs. [118, 119] was used. In CW approach the distribution of B atoms in a binary A�B

alloy is described by a single occupation probability function, n(R⃗). This function gives the probability to �nd the

atom B (Tb, in this case) at the site R⃗ of the lattice. Such approximation is based on the treatment of ordered

phases in the crystalline structure of solid solution which are stable with respect to the formation of antiphase

domains. The choice of these ordered structures does not depend on the type of interatomic interactions and is

dictated only by symmetry considerations [120, 121].

In CW method the structure determination problem is formulated in terms of the reciprocal lattice through

the analysis of CW amplitudes which can be interpreted as both structure amplitudes of the superlattice re�ections

and as long-range order (LRO) parameters. The occupation probability n(R⃗) for atoms at position R⃗ can be

represented in a Fourier series by linear superpositions of static concentration waves:

n(R⃗) = c+
1

2

∑
j

[Q(kj) exp(ikjR⃗) +Q∗(kj) exp(−1kjR⃗)] (3.1)

A static CW is represented as exp(ikjR⃗), where kj is a non-zero wave vector de�ned in the �rst Brillouin zone

of the disordered alloy, R⃗ is a site vector of the lattice, and the index j denotes the wave vectors in the Brillouin

zone. Q(kj) is amplitude of a static CW, and c is the atomic fraction of the alloying element. The star set of wave

vectors kj is formed by several interpenetrating Bravais lattices that can be brought in coincidence with each other

by the superlattice rotation and re�ection symmetry operations. Usually, the term refers only to sublattice sites

that form the Bravais lattice.

The concentration waves are eigenfunctions of the matrix formed by pairwise interatomic energies Ṽpq(R⃗, R⃗′).
In an AB binary system, Ṽ (R⃗, R⃗′) is the interaction energy for atoms at lattice sites R⃗ and R⃗′ [118, 119, 122]:

Ṽ
(
R⃗, R⃗′

)
= VAA

(
R⃗, R⃗′

)
+ VBB

(
R⃗, R⃗′

)
− 2VAB

(
R⃗, R⃗′

)
. (3.2)

3.2.4 Formation energy

Gibbs formation energy for oxygen vacancy in Tb-doped CeO2 was calculated as

∆G
V +2
O

F = ETb,VO

tot − ETb
tot + µO(T, pO2

), (3.3)

where ETb,VO

tot , ETb
tot are total electronic energies of supercells, with, respectively, co-presence of Tb and V

+2
O , and that

which only has a Tb ion. Oxygen chemical potential µO(T, pO2
) was calculated according to a method published

in [123], which casts it as

µO(T, pO2
) = µ0

O(T ) +
1

2
kBT ln

pO2

p0
= EAO

tot − EA
tot −∆GAO(T 0) + ∆µO(T ) +

1

2
kBT ln

pO2

p0
, (3.4)

where µO(T ) is the standard chemical potential, superscripts AO and A denote, respectively, a reference oxide, and

its metal; ∆GAO(T 0) is the oxide's standard heat of formation, taken from a database of experimentally obtained

values [124]. ∆µO(T ) is di�erence between chemical potential at a temperature T and that in the standard state

(T 0 = 298.15 K), which is also taken from the database. kB is the Boltzmann constant, pO2
and p0 are partial

oxygen pressure and start pressure, respectively.

Values of EAO
tot and EA

tot were calculated with DFT method; computational treatment of oxides included van

der Waals correction by Grimme et al. [125], since inclusion of these corrections yielded more precise values of

lattice constants (especially for lighter metal oxides), and produced a smaller root mean square deviation for the
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whole dataset. The �nal value of µO(T, pO2
) was obtained by averaging the values computed for di�erent oxides.

3.2.5 Tb solubility in CeO2

The e�ective interatomic mixing potential is expressed in the form

Ṽ
(
R⃗, R⃗′

)
= VCeCe

(
R⃗, R⃗′

)
+ VTbTb

(
R⃗, R⃗′

)
− 2VCeTb

(
R⃗, R⃗′

)
, (3.5)

where VCeCe

(
R⃗, R⃗′

)
, VTbTb

(
R⃗, R⃗′

)
, and VCeTb

(
R⃗, R⃗′

)
are e�ective pairwise interatomic potentials, and R⃗, R⃗′

are sites in the cationic sub-lattice. Con�gurational part of the free energy for a solid solution (neglecting the

phonon contribution) in CW approach is given in [118] as:

F =
1

2

∑
R⃗,R⃗′

R⃗ ̸=R⃗′

Ṽ
(
R⃗, R⃗′

)
n
(
R⃗
)
n
(
R⃗′
)

+ kT
∑
R⃗

[
n
(
R⃗
)
ln
(
n
(
R⃗
))

+
(
1− n

(
R⃗
))

ln
(
1− n

(
R⃗
))]

− µ
∑
R⃗

n(R⃗).

(3.6)

Summation in eq. 3.6 runs over sites of the Ising lattice (fcc in this case), with Ce and Tb atoms distributed

in it. The �rst term in eq. 3.6 corresponds to the internal energy, the second one is entropy term (-TS), and µ is

chemical potential (strictly, inde�nite multiplier of Lagrange). The function n
(
R⃗
)
that determines the distribution

of solute atoms in the ordered superstructures that are stable with respect to the formation of antiphase domains

may be expanded into the Fourier series:

n
(
R⃗
)
= c+

1

2

∑
s

ηs
∑
js

[
γs

(
js

)
exp
(
ik⃗jsR⃗

)
+γ∗s exp

(
−ik⃗jsR⃗

)]
, (3.7)

where k⃗js are vectors of the reciprocal lattice belonging to the star s, js numerates vectors of the star s, and γs(js)

are coe�cients that determine symmetry of the function n
(
R⃗
)
with respect to re�ection and rotation operations.

n
(
R⃗
)
linearly depends on the long range order (LRO) parameters (ηs) of the superstructures that may be formed

on the basis of the Ising lattice of the disordered solid solution. The LRO parameters are de�ned in such a way that

they are equal to unity in a completely ordered state, where the occupation probabilities n
(
R⃗
)
on all the lattice

sites
{
R⃗
}
are either unity or zero. To determine the LRO parameters, an additional normalization condition for

γs(js) should be used: ∑
js

γs(js) = 1 (3.8)

For the disordered state all ηs are equal to zero. Substitution of eq. 3.7 into eq. 3.6 allows casting the free

energy of formation of solid solution in terms of Fourier transforms of the e�ective interatomic mixing potential,

Ṽ
(
k⃗js

)
:

Ṽ
(
k⃗js

)
=
∑
a

Ṽ
(
R⃗a

)
· exp

(
ik⃗jsR⃗a

)
. (3.9)

The two superstructures (�g. 3.2) used here to represent (Ce1−cTbc)O2 solid solution are characterized by

their k⃗js vectors: k⃗1 = 2π
a (0, 0, 1) for P1(12), and k⃗1 = 2π

a ( 12 ,
1
2 ,

1
2 ) for F8(24), where a is the cubic lattice parameter.

Substituting these vectors in eq. 3.7 yields the following occupation probabilities for each superstructure:

n1

(
R⃗
)
= c+ η1γ1 exp(2πiz) (3.10)
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n2

(
R⃗
)
= c+ η2γ2 exp (iπ(x+ y + z)) . (3.11)

For both superstructures in this analysis c = 0.5, and LRO parameters are unitary, thus γ1 = γ2 = 1/2.

Substituting eqs 3.10 and 3.11 into eq. 3.5, free energies of formation for the superstructure 1 and 2 (per

site of fcc sub-lattice), respectively, are obtained:

F1 =
1

2
Ṽ (0)c(c− 1) +

1

8
Ṽ
(
k⃗1

)
η21

+ kT

[(
c+

1

2
η1

)
ln

(
c+

1

2
η1

)
+

(
1− c− 1

2
η1

)
ln

(
1− c− 1

2
η1

)] (3.12)

F2 =
1

2
Ṽ (0)c(c− 1) +

1

8
Ṽ
(
k⃗2

)
η22

+ kT

[(
c+

1

2
η2

)
ln

(
c+

1

2
η2

)
+

(
1− c− 1

2
η2

)
ln

(
1− c− 1

2
η2

)]
,

(3.13)

where Ṽ (0) is is the Fourier transform of the e�ective interatomic mixing potential for k = 0. In these eqs the

�rst two terms are structures' mixing energies, and the last term is con�gurational entropy of mixing. These free

energies Fi show energy (dis)advantage of the structures with respect to a standard state that is the mixture of

their constituents, CeO2 and TbO2, which has the energy

Estand = ECeO2 · (1− c) + ETbO2 · c, (3.14)

where ECeO2
and ETbO2

are the total energies of these compounds, obtained from DFT+U calculations at T = 0

K. For absolutely ordered structures at T = 0 K, cst = 1/2, and η1,2 = 1, mixing energies are

∆E1 =
1

8
Ṽ (0) +

1

8
Ṽ
(
k⃗1

)
(3.15)

∆E1 =
1

8
Ṽ (0) +

1

8
Ṽ
(
k⃗2

)
, (3.16)

and may be obtained from DFT calculations as di�erence between the total energies of corresponding superstruc-

tures and the total energy of the mixture of constituents given by eq. 3.14. From eq. 3.9 it follows that

Ṽ
(
k⃗1

)
= −4Ṽ

(
R⃗1

)
+ 6Ṽ

(
R⃗2

)
− 8Ṽ

(
R⃗3

)
+ . . . , (3.17)

Ṽ
(
k⃗2

)
= −6Ṽ

(
R⃗2

)
+ 12Ṽ

(
R⃗4

)
+ . . . , (3.18)

Ṽ (0) = 12Ṽ
(
R⃗1

)
+ 6Ṽ

(
R⃗2

)
+ . . . (3.19)

With the approximation of interactions in the two nearest neighbours on the Ce/Tb sub-lattice this yields

∆E1 = Ṽ
(
R⃗1

)
+

3

2
Ṽ
(
R⃗2

)
(3.20)

∆E2 =
3

2
Ṽ
(
R⃗1

)
. (3.21)

Calculated values of ∆E1 and ∆E2 are 0.228 eV and 0.056 eV respectively. Their positive sign means that

both superstructures are energetically unfavourable in comparison with a mixture of constituents, CeO2 and TbO2,

and do not exist. with these values obtained, however, it is possible to calculate Ṽ (0), which is responsible for the

behaviour of disordered Ce/Tb lattice. Solving eqs 3.20 � 3.21, and substituting the result into eq. 3.19, a value

for Ṽ (0) = 1.210 eV is obtained.

Eqs 3.12 and 3.13, for a case of absolutely disordered structures (η1 = 0, η2 = 0), are similar to a model of
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regular solid solution used for construction of phase diagrams in [126]. In this model, the free energy of mixing for

the disordered solid solution is cast as ∆Fmix = ∆E − T∆S, where ∆S is the con�gurational entropy of mixing,

and the mixing energy is ∆E = L · c · (1− c). Here, L = − 1
2 Ṽ (0).

This shows that a model which assumes that a mixture of CeO2 and TbO2 will have a �uorite structure

with Ce/Tb atoms distributed over fcc sub-lattice, requires only two calculations of absolutely ordered structures to

compute energy parameter that determines mixing energy of an absolutely disordered (Ce1−cTbc)O2 solid solution.

A second important assumption that allows to calculate the free energy of mixing, and to predict solubility at

di�erent temperatures and concentrations, c, is based on a work by P. A. �guns et al. [3], in which a decomposition

of (Ce1−cGdc)O2−c/2 solid solutions was studied, using a cluster expansion method. Their �nding is that cluster

interaction parameters VAA,VBB, andVAB do not depend on the dopant concentration. Therefore, it is reasonable

to assume that for k⃗s = 0 (i.e. no vector in the reciprocal space can be symmetrized with respect to dopant

distribution in the lattice), Ṽ (0) is also concentration-independent, and that L = const for the whole range of

concentration.

Fig. 3.3 presents mixing energy (∆E), con�guration entropy of mixing term (−T∆S), and the free energy

of mixing ∆Fmix as functions of Tb concentration at T = 1000 K. The function of ∆Fmix is concave in the

entire concentration range, thus at temperature(s) where �uoride structures of both CeO2 and TbO2 exist, an

unlimited solubility of Tb in CeO2 should be observed. According to binary Tb�O and Ce�O phase diagrams, this

temperature region is above ca. 700 ◦C.

Figure 3.3: Thermodynamic parameters of CeO2/TbO2 mixture as functions of Tb concentration at T = 1000 K,
adopted from [110]

3.2.6 Reduced Tb and oxygen vacancy in CeO2

Not only is Tb absolutely soluble in CeO2, it can also exist in either +3 or +4 oxidation state. Both solutions

require Tb to be located at a low-symmetry site, and in these calculations their energy di�erence is only 0.07

eV/cell in favour of the +4 oxidation state. This assertion of mixed OS coexistence is consistent with an experi-

mental observation that in Ce1−cTbcO2−δ, lattice constant's dependence on c is nicely approximated by averaging

theoretically obtained dependencies for cases of pure Tb3+ and Tb4+ [4].

Naturally, Tb +3 has to be compensated by an electronic hole. In these calculations, its complementary

hole is delocalized over the entire supercell, leading to an enhanced Fermi energy occupation by O 2p states, and,
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thus, enhanced hole conductivity. Increased hole conductivity is also consistent with the electrical conductivity

measurements from the literature [4].

It was shown in the previous section (3.1) that in case of undoped CeO2−δ, localization of two electrons on

4f orbitals of two nearest Ce cations, corresponding to formation of a small polaron, is the most favourable case

w.r.t. the defect formation energy, about 0.61 eV lower in energy than the large radius polaron with localization on

all four Ce ions. So, the minimum energy state was observed for Sz = 1 at low symmetrical Cs(or, alternatively, at

C2v-position) of V +2
O in the 81-atom supercell, with ∆G

V +2
O

F = 4.10 eV at 0 K (table 3.3). Repeating this calculation

with PBE+U functional, a PW basis set, µO as de�ned in eq. 3.3 and shown in �g. 3.4, and with pO2
yielded

∆G
V +2
O

F = 3.10 eV (all at T = 0 K). At T = 400 K in undoped CeO2−δ ∆G
V +2
O

F = 2.64 eV.

In Tb-doped CeO2 formation of V +2
O complicates electronic interactions, but it also simpli�es behaviour of

Tb ion. Tables 3.4 and 3.5 summarise these results. In both tables distance between an ion and a vacancy refers

to an unrelaxed �uorite structure with lattice constant 5.41 Å. Distance between metal ions is measured after a

full structure relaxation, Sz is the spin projection, µ is the magnetic moment, q is the atomic charge, and ∆G
V +2
O

F

is the Gibbs formation energy of an oxygen vacancy, calculated w.r.t. the chemical potential of oxygen µO at T =

400 K, and pO2
= p0 (eq. 3.3, and �g. 3.4). Table 3.4 lists results for systems, in which V +2

O is among the nearest

neighbours of Tb (d(Tb−VO) = 2.34 Å). Table 3.5 lists results for the next nearest neighbours (d(Tb−VO) = 4.49

Å), all of which have the same site symmetry, Cs.

First important conclusion drawn from this data is that presence of Tb ion lowers the ∆G
V +2
O

F by a factor

of 4: 0.66 eV (the most favourable case, table 3.4) vs. 2.64 eV for an undoped system. Second, the key factor

determining the magnitude of ∆GV +2
O

F is Tb oxidation state. All solutions with µTb > 6.2 µB (Tb +4) have very

high formation energies, regardless of distances, spin orientation, and vacancy�ion distance. Third, localization

on next-nearest Ce ions w.r.t. oxygen vacancy is more favourable than on the nearest neighbours or more remote

metal ions.

The most favourable solution corresponds to a system in which oxygen vacancy is located next to Tb,

and residual electrons localize on Tb and on a Ce ion from O's 3rd coordination sphere in an antiferromagnetic

alignment.

Table 3.4: E�ect of local symmetry and electronic localization on the energetics of oxygen vacancy formation near
Tb ion †

Point
symmetry

d(Ce+3-VO),
Å

Sz d(Tb-Ce+3),
Å

µTb, µB qTb, e µCe, µB qCe, e ∆G
V +2
O

F ,
eV

Cs 4.59 1 6.76 6.06 2.09 -0.93 2.13 0.66

Cs 2× 4.59 −1/2 2× 6.76 6.06 2.09 2×−0.51 2.31 1.00

C3v 2.34 2 4.17 6.04 2.17 3× 0.37 2.3 1.10

Cs 2.34 1 4.13 6.03 2.09 -0.93 2.09 1.16

C3v 3× 2.34 -1 3× 4.18 6.07 2.08 3×−0.35 2.32 1.28

C3v � 1/2 � 6.05 2.09 � � 1.49

Cs 2× 4.56 1 2× 5.60 6.24 2.16 2× 1.00 2.14 2.19

C3v 3× 4.56 3/2 3× 5.60 6.24 2.17 3× 0.70 2.28 2.43

C3v 3× 2.34 3/2 4.18 6.25 2.17 3× 0.71 2.22 2.58

C3v 3× 4.49 −3/2 3× 6.92 6.35 2.20 3×−0.47 2.33 2.74

† d(Tb−VO) = 2.34 Å

Results presented in this section are published in [A2] and [A3] . The author has performed most calcu-

lations of cerium and terbium oxides, all calculations on Tb-doped CeO2, has conducted all calculations related to
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Table 3.5: Energetics of oxygen vacancy formation at the next nearest site w.r.t. Tb ion †

d(Ce+3-VO),
Å

Sz d(Tb+3-Ce+3),
Å

µTb, µB qTb, e µCe, µB qCe, e ∆G
V +2
O

F ,
eV

5.87 1 4.12 6.12 2.09 0.97 2.09 0.84

4.49 1 7.79 6.05 2.12 -0.97 2.14 0.95

2.34 1 6.76 6.05 2.12 -0.88 2.12 1.04

2.34 1 5.43 6.05 2.12 0.93 2.12 1.16

2× 4.58 -1 2× 6.75 6.05 2.12 2×−0.51 2× 2.31 1.21

2× 4.49 3/2 2× 6.74 6.05 2.12 2× 0.52 2× 2.31 1.25

3× 2.34 -1 3× 4.18 6.07 2.08 3×−0.35 3× 2.32 1.27

† d(Tb−VO) = 4.49 Å; Cs symmetry

Figure 3.4: (a) oxygen chemical potential, as de�ned by eq. 3.4, calculated from metal oxides; and (b) formation

energy of ∆GV +2
O

F for the lowest-energy case, presented as functions of temperature; adopted from [127]

parametrisation and validation of the model, has gathered the data, has contributed texts and �gures to papers.
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4. THE CASE OF ZINC OXIDE

4.1 Supercell selection

ZnO crystallizes in the wurtzite structure (space group No.186, P63mc), making it impossible to embed an exper-

imentally observed six-coordinated Ir in a ZnO matrix by simply placing Ir atom in a regular lattice site or by

substituting a Zn atom. Therefore, a model of a six-coordinated Ir requires presence of interstitial oxygen atoms

in the wurtzite structure. The inclusion of interstitial atoms disrupts the crystalline structure and is not compati-

ble with symmetry operations of the space group to which wurtzite structure belongs. Ultimately, two supercells

were chosen, P4(16), and P48(192), representing Ir concentrations of 12.5% and 1.04%, respectively. Concentra-

tion in P4(16) supercell corresponds to the amorphization/conductivity threshold described in [9], whereas low

concentration of P48(192) is chosen as a control sample for validating the model.

4.2 Computational details

4.2.1 DFT parameters

All calculations were made using public release of crystal17 ver. 1.0.2 [19]. Tolerance factors of 7, 7, 7, 9, and 30

for the Coulomb and exchange integrals were used. The SCF convergence threshold for the total electron energy

was set to 10−7 Hartree, and the threshold for change in energy between consecutive geometry optimization steps

was set to 10−7 Hartree. All calculations of defective structures in the neutral supercells were spin-polarized and

did not include the spin�orbit e�ects; the use of symmetry operations was explicitly omitted.

PBE0 exchange-correlation functional was used, as the employed basis sets were optimized for and have been

used on the compounds of interest with this functional [128, 129]. Basis set for Zn from Gryaznov et al. [129] has

been re-optimized with optbas utility [106] for use with other basis sets. For calculating vibrational frequencies

the frozen phonon method (direct method) [130, 131] was used, and the SCF convergence threshold for the total

electron energy was adjusted to 10−9 Hartree. In all calculations, reciprocal space was sampled with the following

Monkhorst-Pack k -point grids: 4× 4× 4 for P4(16) supercells, and 2× 2× 2 for P48(192).

4.2.2 O incorporation

This study's principal object of interest is a six-coordinated Ir�O complex embedded in ZnO matrix. However,

since it is impossible to obtain a six-coordinated Ir by simply placing it anywhere in ZnO structure, a presence of

interstitial O atoms is necessary. Relaxation of atomic positions is highly sensitive to initial placement of atoms,

and may lead to various stable solutions. To compare obtained con�gurations of interstitial O atoms around Ir, O

incorporation energy Einc(Oi) is used:

Einc(Oi) = E(Oi)− E(Ir)− E(O2), (4.1)

where E(Oi) is is the total electronic energy of the supercell with two Oi atoms and an Ir atom; E(Ir) is the total

electronic energy of the supercell with only Ir+2O4
1 without Oi; E(O2) is the total electronic energy of an oxygen

molecule. A negative value of Einc(Oi) means that incorporation is energetically favourable. All total electronic

energies in eq. 4.1 are calculated using the same basis set and exchange�correlation functional.

1Here, a +2 oxidation state of Ir is set by de�nition: Ir is forced to substitute a +2 Zn ion in a ZnO matrix, with the same
surroundings as Zn ion. This oxidation state, while theoretically possible, is not an optimal OS of iridium.
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4.3. CONDUCTIVITY BASELINES

4.2.3 Thermoelectric parameters

This study's principal quality of interest is an alleged emergence of p-type conductivity in Ir-doped ZnO, observed

as positive values of Seebeck coe�cient [9]. In the original experiment performed by Zubkins et al. the electrical

transport of the thin �lms was studied by measuring the DC electrical conductivity at room temperature and as a

function of temperature between 90 K and 330 K. Seebeck coe�cient was determined by controlling a temperature

di�erence across the sample and measuring the resulting voltage [9].

In this work, τ = 10 fs was used in thermoelectric calculations, which is a conservative estimate for a system

leaning towards conductivity (see section 2.5.2 and eq. 2.6). Reported values of τ , obtained from charge carrier

mobility data, range from 17 to 57.9 fs for carrier concentrations ∼ 1016cm−3 [58, 132]. As a scalar positive

pre-factor, precise value of τ does not a�ect behaviour of the transport distribution function, and only impacts

the scale of values. For convenience, in analysing results, the Fermi level is shifted by the valence band maximum

(EV BM ): µF = µ− EV BM .

One can clearly see that the calculated conductivity and Seebeck coe�cient are not strictly equivalent to

experimentally obtained data. In an experimental setup the Seebeck coe�cient S is calculated at zero current

density from measured thermoelectric voltage ∆V and measured temperature di�erence ∆T :

S = −∆V

∆T
. (4.2)

When obtained from eqs 2.9 and 2.8, S is a tensor. Its reduction to a scalar is described in section 4.3.

4.3 Conductivity baselines

Whereas experimentally determined electrical conductivity and Seebeck coe�cient are scalars, when calculated from

�rst principles, they are tensors. Experimental values are measured for real samples, and are, e�ectively, averaged

over many crystalline domains. Calculated thermoelectrical parameters are, e�ectively, expressed as functions of

chemical potential and direction (section 4.2.3, eqs 2.6�2.9). Here, to reduce dimensionality of these objects to

a simple function of the f(x) type, thermoelectric parameters are presented as their largest value (by absolute

value) for a given value of chemical potential µ. The results of calculations on ideal ZnO and ZnO with intrinsic

defects (Zn vacancy for a p-type defect and O vacancy for a n-type defect) de�ne a baseline for conductivity in this

material. Fig. 4.1 shows thermoelectrical properties of several idealized systems.

In intrinsic semiconductors the bands may conduct in parallel, and the observed value and sign of the

Seebeck coe�cient depends on the majority charge carrier: positive for hole-dominated conduction and negative

for electron-dominated conduction. This results in a crossover behaviour seen in �g. 4.1. The crossover is in the

middle of band gap. Undoped ZnO is a typical wide-gap semiconductor, and as such its conductivity diagram is

a classical 'V' shape, and its Seebeck coe�cient shows a mid-gap p-n switching pattern, as the chemical potential

increases, �g. 4.1(a).

A neutral zinc vacancy, by de�nition a p-type defect, establishes the baseline pattern for this type of conduc-

tivity: lower absolute values of Seebeck coe�cient, an additional switching mode due to an acceptor level near the

top of valence band, and a local maximum of conductivity corresponding to positive range of Seebeck coe�cient, �g.

4.1(b). On the other hand, n-type semiconductors, as in the case of interstitial O and a complex O�O defect, either

exhibit intrinsic semiconductor behaviour, simultaneously narrowing the band gap, 4.1(c), or have a defect level

close to the bottom of conduction band, with the conductivity maximum matching a negative Seebeck coe�cient,

�g. 4.1(d). Finally, two iridium compounds, Ir2O3(e) and IrO2(f), represent, respectively, a non-conductive and

conductive Ir systems. A conductive system does not have a distinct conductivity well across the entire range of

chemical potential, and is characterized by low values of Seebeck coe�cient.

To interpret results obtained with this model, it is important to keep in mind that under real temperatures
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4.3. CONDUCTIVITY BASELINES

electrons in the valence band will be thermally excited, and as a result the potential will increase with respect to the

level calculated at 0 K. In �g. 4.1 this can be seen as, for instance, slower-than-exponential decay of conductivity

in Ir2O3(e). A region of chemical potential where switch to pure exponential decay (transition from a curve to a

straight line) may therefore be used to assess the position of Fermi level at a given temperature.
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4.3. CONDUCTIVITY BASELINES

Figure 4.1: Conductivity and Seebeck coe�cients of idealized systems at T = 300 K. Dashed gray line marks 0 eV
= VB top = EFermi(0 K). Solid black lines are Seebeck coe�cients Smax(µ).
a: pure ZnO;
b: ZnO with Zn vacancy, p-type conductivity pattern;
c: ZnO with O vacancy, semiconducting pattern;
d: ZnO with O�O defect, n-type conductivity pattern;
e: pure Ir2O3, a semiconductor;
f: pure IrO2, electrically conductive
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4.4. STRUCTURAL DESCRIPTION

4.4 Structural description

4.4.1 Relaxation and Ir�O complexes

It was posed in section 4.1 that the ZnO-Ir-O system is very sensitive to the initial placement of interstitial oxygens.

Table 4.1 sums up some of the possible solutions, all obtained for the same supercell, with the same number of

atoms, with two interstitial oxygen atoms.

Table 4.1: Ir�O complexes in P4(16) supercell
Coordination

number
dIr−O,
Å

qIr,
e

µIr,
µB

dO−O,
Å

νO�O,
cm−1

Einc(Oi),
eV

6 1.893�1.972 1.325 0.514 � � -5.15

6 1.825�2.125 1.383 1.569 � � -4.95

6 1.844�2.051 1.415 1.542 � � -4.92

6 1.853�2.046 1.384 0.562 � � -4.84

6 1.850�2.085 1.366 -0.003 � � -4.82

5 1.828�2.024 1.095 0.695 1.540 810 -4.37

4 1.846�1.920 1.193 1.795 1.470 942 -3.77

5 1.854�2.186 1.282 2.236 � � -3.49

4 2.136�2.176 0.751 2.530 � � 0i

i. This is Ir+2O4, or E(Ir) from eq. 4.1, no interstitial oxygen atoms.
Ir incorporation energy is ca. +6 eV w.r.t. pure ZnO.

This table shows the breadth of possibilities that Ir has in ZnO environment. First, negative incorporation

energies show that Ir-doped ZnO requires interstitial oxygen atoms. Second, while 6-coordinated Ir�O complexes

are energetically more favourable than lower-coordinated alternatives, these are not the guaranteed solution. Ir is

able to change its oxidation state and its magnetic con�guration, forming low-spin, high-spin, and intermediate-spin

complexes. This is re�ected in the �rst 6 rows of table 4.1, where the chief di�erences in Einc(Oi) are attributed

to di�erent spin-states of Ir, with another factor being other atoms' electronic localization.

Formation of peroxide moiety was not observed for 6-coordinated Ir�O complex (at a �xed concentration

of interstitial oxygen atoms), but other peroxide solutions are possible, yet costly. The costs associated with

formation of this defect are both energetic and structural: presence of peroxide distorts the structure, see �g. 4.2.

There, Ir-centred radial distribution functions are plotted for interstitial-oxygen-lacking Ir2+O4 (a), 4-coordinated

peroxide-forming Ir�O (b), 5-coordinated Ir�O with peroxide (c), and lowest-energy 6-coordinated Ir�O (d).

It is apparent that among the 4 structures, solutions without peroxide, �g. 4.2(a,d), are more ordered, with

clear, sharp peaks. At the same time, 6-coordinated Ir�O, �g. 4.2(d) shows clear signs of structural deterioration,

with broader, less resolved and lower peaks. Peroxide solutions, �g. 4.2(b,c), appear amorphous in the 3�6 Å

region, with convoluted peaks in the 2�4 Å region, indicating that Ir's next-neighbouring Zn�O bonds have large

variances.

Results presented in this section agree with experimentally observed behaviour of this system: 6-coordinated

Ir�O complex is more likely to form in ZnO, and the incorporation of additional oxygen atoms causes signi�cant

structural distortions, making the material appear XRD-amorphous. Four structures from this section have been

selected for further analysis: a zero-interstitial system Ir+2O4, both peroxide solutions, and a groundstate 6-

coordinated Ir�O.
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4.4. STRUCTURAL DESCRIPTION

Figure 4.2: Ir-centred radial distribution functions of Ir�O complexes in ZnO
a: ZnO + Ir2+O4 [12.5%];
b: 4-coordinated Ir�O with peroxide
c: 5-coordinated Ir�O with peroxide
d: groundstate 6-coordinated Ir�O

4.4.2 Electronic structure

Even without interstitial oxygen atoms Ir produces signi�cant changes in the electronic structure of its host material.

Magnetic moment of its 4 oxygen neighbours is non-zero, same as for 6-coordinated Ir, regardless of concentration,

see �g. 4.3. Magnetic moments on oxygens hint at presence of partially �lled electronic levels associated with Ir�O

bonds.

From calculated density of states (DOS, �g. 4.4) it can be seen that Ir+2O4 (a) and a 6-coordinated Ir�O

(b) have a region extending down to about 0.4 eV below Fermi level, consisting entirely of Ir and O states. Only

below this region projections from other atoms appear. This con�rms that the top of valence band consists of Ir�O

levels, and from �g. 4.3 it is known that they are only partially �lled. Bottom of conduction band is also due to

Ir�O, and is much closer than that of pure ZnO, narrowing the band gap down to 1.75�1.9 eV.

Selected Ir�O complexes were assigned the following oxidation states: +3 for a 4-coordinated solution

with peroxide fragment (Ir+3O4); +4 for 5-coordinated, peroxide-forming complex (Ir+4O5), and +4 for the 6-

coordinated complex (Ir+4O6). These are also the most stable positive oxidation states of iridium, and are consis-

tent with the ones found in amorphous IrOx powders [133].
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4.4. STRUCTURAL DESCRIPTION

Figure 4.3: Magnetic moments of Ir�O complexes in ZnO. Yellow clouds represent charge density isosurfaces for
orbitals with unpaired electrons.
a: ZnO + Ir2+O4 [12.5%];
b: ZnO + 6-coordinated Ir�O [12.5%]
c: ZnO + 6-coordinated Ir�O [1.04%], fragment

Figure 4.4: DOS of ZnO:Ir. Negative values correspond to spin-down channel.
a: ZnO + Ir+2O4 [12.5%];
b: ZnO + 6-coordinated Ir�O [12.5%]
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4.5. THERMOELECTRIC PROPERTIES

4.5 Thermoelectric properties

Electronic conductivities and Seebeck coe�cients for selected systems are summarized in �g. 4.5. Here, an idealized

case of ZnIr2O4, �g.4.5(a), is given as a baseline, representing a 6-coordinated Ir in a system of Zn-O bonds. Zinc-

iridium spinel is behaving like a semiconductor. When measured experimentally, at room temperature and in

polycrystalline thin �lm samples [134], its Seebeck coe�cient is reported as 53.9 µVK−1, and its conductivity is

2.09× 102 Ω−1m−1.

Here, taking values at thermally-adjusted Fermi level (see end of section 4.3 for details), ZnIr2O4's Seebeck

coe�cient is 92.3 µVK−1, and its conductivity is 1.72× 102 Ω−1m−1, a good agreement with experimental results.

See table 4.2 for the rest of numerical values. The importance of this result is in showing that on its own, 6-

coordinated Ir, even when interacting with a system of Zn-O bonds, does not necessarily lead to emergence of

p-type conductivity.

Fig. 4.5(b) represents Ir+2O4, a 4-coordinated Ir in ZnO without interstitial oxygen atoms. The position

of 0 K Fermi level and two regions of conduction mode switching indicate presence of a strong defect level in the

electronic structure. According to DOS projections (�g. 4.4(a)), this level is occupied and consists of Ir�O states.

Non-zero spin on oxygen atoms (�g. 4.3(a)) suggests that this level is not fully occupied, and is therefore an

acceptor level capable of p-type conductivity.

Results for Ir+3O4 and Ir+4O5 correspond to letters c and d on �g. 4.5. These systems represent solutions

with a peroxide complex. In comparison to other Ir-O complexes at the same concentration, �g.4.5(b,e), these are

characterized with high values of Seebeck coe�cient and lower conductivities, hinting that a peroxide complex is

not the defect responsible for observed p-type conductivity, in contrast to a hypothesis put forward in [9].

Finally, 6-coordinated complex Ir+4O6 at target concentration [12.5%] and at a low concentration [1.04%],

respectively, is shown in �g.4.5(e,f). Once again, it has a partially �lled Ir-O level near the top of valence band

(�gs. 4.4(b) and 4.3(b,c)), its conductivity peaks correspond to positive values of Seebeck coe�cient, and bottom of

the conductivity well is at ∼ 102 Ω−1m−1, showing all signs of a p-type conductive material. Its low-concentration

counterpart, while exhibiting the same qualitative traits, quantitatively behaves much closer to pure ZnO, but still

has a potential for p-type conductivity.

In conclusion, it has been shown that Ir in ZnO creates a partially �lled electronic acceptor level capable of

producing measurable p-type conductivity, and that this Ir-O complex induces strong local structural changes by

pulling in interstitial oxygen atoms (assuming oxygen-rich formation conditions) to make energetically favourable

6-coordinated Ir-O complexes. Results presented in this section are published in [10].
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4.5. THERMOELECTRIC PROPERTIES

Figure 4.5: Conductivity and Seebeck coe�cients of ZnO:Ir at T = 300 K. Dashed grey lines mark band edges,
with 0 eV = VB top = EFermi(0 K)
a: pure ZnIr2O4;
b: ZnO + Ir+2O4 [12.5%];
c: ZnO + Ir+3O4 [12.5%];
d: ZnO + Ir+4O5 [12.5%];
e: ZnO + Ir+4O6 [12.5 %];
f: ZnO + Ir+4O6 [1.04%]
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4.5. THERMOELECTRIC PROPERTIES

Table 4.2: Calculated thermoelectric properties at temperature-adjusted Fermi levels
Compound S, µV K−1 Sexp, µV K

−1 σ,Ω−1m−1 σ,Ω−1
expm

−1

ZnO 2510 Non-conductive 6.05× 10−8 Non-conductive

ZnIr2O4 92.3 53.9i [134] 1.72× 102 2.09× 102, 3.39× 102 i [134]

IrO2 63.9 � 1.32× 106 1.15�2.90× 106 [135, 136]
0.68�1.67× 106 ii[137]
2.94× 106 iii[137]

Ir2O3 105 � 8.98× 101 �

Ir2+O4 80.1 6.8 iv[9] 2.57× 102 47.6 iv[9]

Ir3+O4 88.7 3.20× 101

Ir4+O5 89.4 4.13× 101

Ir4+O6 [12.5%] 83.8 1.62× 102

Ir4+O6 [1.04%] 2335 3.49× 10−8

i. Measured at RT; two values for σ for polycrystalline and epitaxial thin �lms whereas
the Seebeck coe�cient was measured for polycrystalline �lms only; the thin �lms prepared by
PLD between 773 and 973 K.
ii. The values are taken at RT for 100 nm �lms prepared by PLD and oxidized at 0.05-0.2 mBar
and 500 ◦C
iii. The bulk value measured at RT
iv. Ir concentration is 16.4%
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5. SUMMARY AND CONCLUSIONS

This thesis presents the results of density functional theory (DFT) calculations on cerium dioxide(CeO2) and zinc

oxide (ZnO) supercells using corrected generalized gradient approximation (GGA) and hybrid GGA functionals.

The results were obtained using massively parallel calculations on high-performance computing systems.

Model formulation and selection of simulation cells is not a trivial task, and it was shown in this work that

symmetry analysis of a simulated object can be crucial for obtaining all possible solutions for electron localization

and defect distribution in the investigated system. Speci�cally, the site-symmetry approach, as used in this thesis,

was applied to the problem of modelling small polarons in CeO2, and it was shown that:

• certain supercells and certain atomic positions within these supercells will yield only high-symmetry, highly

delocalized solutions;

• larger supercells are not necessarily better for modelling point defects, as they may lack diversity of symmetry

orbits;

• localized electronic solutions require lowering or loss of symmetry.

Application of the concentration waves approach (a method of statistical thermodynamics that is also grounded

in symmetry analysis) has shown that if a mixture of CeO2 and TbO2 were to have a �uorite structure in a

temperature where either constituent also has the �uorite structure, an unlimited solubility of Tb in CeO2 should

be observed. This conclusion is good news for high-temperature applications of Tb-doped CeO2, such as mixed-

conductive membranes for oxygen separation, because it asserts that no phase separation should occur at the

operating conditions.

The presence of Tb in membranes for oxygen separation has the added bene�t of lowering the energy of

oxygen vacancy formation even at high partial pressure � a key parameter that enables the transport of oxygen

ions across the membrane. It has been demonstrated in this work that in Tb-doped CeO2 the energy of oxygen

vacancy formation is ca. 4 times lower when compared to an undoped system.

It was con�rmed that Ir, when embedded in the ZnO matrix, is more likely to form a 6-coordinated complex

in comparison to other coordination numbers. It was also shown that, while the formation of peroxide moiety

in this system is not impossible, its formation is energetically more demanding in comparison to a peroxide-free

system.

The formation of a 6-coordinated Ir-O complex in the ZnO lattice was shown to be a probable cause for the

emergence of measurable p-type conductivity in this material. At the same time, peroxide-containing complexes

exhibit lower conductivities with higher Seebeck coe�cients. This work also shows that well-ordered 6-coordinated

Ir on its own cannot be a p-type conductor, even in a system with Zn�O bonds: ZnIr2O4, a compound with

6-coordinated Ir in a system of Zn�O bonds is shown to exhibit a pure semiconductor-like behaviour. It must be

concluded, then, that the emergence of p-type conductivity in Ir-doped ZnO is a combination of lattice distortion

and electronic acceptor levels introduced by Ir with interstitial oxygen atoms.

Main conclusions

1. The site-symmetry approach is a powerful instrument for modelling polaronic properties in crystalline struc-

tures.

2. In CeO2 crystals (and in all materials that have the same crystalline structure) there are supercells with both

high- and low-symmetry orbits, as well as supercells in which there are no symmetry orbits corresponding to

primitive cell symmetries.
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3. The mode of electronic localization can a�ect the formation energy of a point defect by up to ca. 1 eV in a

simple binary con�guration (such as CeO2), and by up to ca. 3 eV in a more complex con�guration when

multiple oxidation states are possible (for instance, Tb-doped CeO2).

4. The mode of electronic localization can be a more important factor a�ecting the energetics of a solution than

the relative defect placement.

5. Ir, when embedded in ZnO under oxygen-rich conditions, creates a 6-coordinated Ir-O complex, which distorts

the lattice of ZnO, and produces electronic acceptor levels. At high enough concentrations of Ir these e�ects

compound to such a degree that the resultant structure becomes amorphous, and starts to exhibit a p-type

conductivity.
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MAIN THESES

The results obtained in the course of this work using DFT-based modelling techniques can be used to put forward

and provide support for the following propositions:

1. It is possible to list all symmetry-allowed atomic and magnetic con�gurations of a system using the site-

symmetry approach without performing an exhaustive search.

Published in [A1, A3].

2. In the CeO2 crystals, both small- and large-radius polarons are able to form, with small polarons having

lower energy of formation, and being accompanied by a decrease in local symmetry.

Published in [A1].

3. Tb ions have unlimited solubility in CeO2 and may exist as both Tb3+ and Tb4+. If an oxygen vacancy is

formed alongside a Tb impurity, then Tb3+ is the most stable oxidation state.

Published in [A2, A3].

4. The addition of Tb ions to CeO2 lowers the formation energy of oxygen vacancies in the material's crystalline

structure.

Published in [A3].

5. In the ZnO crystal Ir ion is likely to create a 6-coordinated complex with the lattice and interstitial oxygen

atoms. Such a complex has lower formation energy in comparison to other possible complexes with di�erent

coordination numbers.

Published in [A4].

6. ZnO-embedded Ir complex increases the material's electronic conductivity, lowers its Seebeck coe�cient, and

can be a cause for measurable p-type conductivity.

Published in [A4].
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PARTICIPATION IN CONFERENCES

International conferences

1. 29.05.�02.06.2023, Spring meeting of the European Materials Research Society (Strasbourg, France),

oral presentation �Atomistic insight into proton migration barriers in BaFeO3−δ� (A. Chesnokov, M. F.

Hoedl, D. Gryaznov, R. Merkle, E. A. Kotomin, J. Maier)

2. 04.07.�06.07.2022, The joint Functional Materials and Nanotechnologies (FM&NT) and Nanotechnology and

Innovation in the Baltic Sea region (NIBS) conference, (Riga, Latvia),

oral presentation �A �rst-principles study of point defects and electronic conductivity in ZnO� (A. Chesnokov,

D. Gryaznov, D. Bocharov, A. Kuzmin, J. Purans)

3. 31.05.�03.06.2021, Spring meeting of the European Materials Research Society (Online),

oral presentation �Thermoelectric properties of Ir-doped ZnO from hybrid DFT calculations� (A. Chesnokov,

D. Gryaznov, A. Kuzmin, J. Purans, E. A. Kotomin, N. V. Skorodumova)

4. 23.11.�26.11.2020, 11th International Scienti�c Conference �Functional Materials and Nanotechnologies� (On-

line),

oral presentation �Role of interstitial oxygens in Ir-doped ZnO� (A. Chesnokov, D. Gryaznov, J. Purans, E.

A. Kotomin, N. V. Skorodumova)

5. 16.09.�20.09.2019, Fall meeting of the European Materials Research Society (Warsaw, Poland),

oral presentation �Hybrid density functional calculations of Ir doped ZnO� (A. Chesnokov, D. Gryaznov, J.

Purans, E. A. Kotomin, N. V. Skorodumova);

poster presentation �Defects in CeO2: DFT and site symmetry approach� (A. Chesnokov, D. Gryaznov, E.

A. Kotomin)

6. 30.05.�01.06.2019, 118th General Assembly of the German Bunsen Society for Physical Chemistry, Bunsen-

tagung 2019 (Jena, Germany),

poster presentation �Calculating Tb3+-doped CeO2 from �rst principles� (A. Chesnokov, D. Gryaznov, E. A.

Kotomin)

7. 24.04.�27.04.2017, 11th International Scienti�c Conference �Functional Materials and Nanotechnologies� (Tartu,

Estonia),

poster presentation �First principles calculations of defective CeO2: use of site symmetry in a supercell model �

(A. Chesnokov, D. Gryaznov, R.A. Evarestov, E.A. Kotomin)

Local conferences

1. 28.02.�02.03.2023, 39th annual ISSP UL scienti�c conference (Riga),

oral presentation �Atomistic insight into proton migration barriers in BaFeO3−δ� (A. Chesnokov, M. F.

Hoedl, D. Gryaznov, R. Merkle, E. A. Kotomin, J. Maier)

2. 22.02.�24.02.2022, 38th annual ISSP UL scienti�c conference (online),

oral presentation �First-principles description of ZnO2: a comparative DFT study� (A. Chesnokov, D.

Gryaznov, D. Bocharov, J. Purans)

3. 23.02.�25.02.2021, 37th annual ISSP UL scienti�c conference (online),

oral presentation �Local atomic structure of Ir-doped ZnO: a comparison between experimental results and

hybrid DFT calculations� (A. Chesnokov, D. Gryaznov, J. Purans, A. Kuzmin, E. A. Kotomin, N. V. Skoro-
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dumova)

4. 11.02.�13.02.2020, 36th annual ISSP UL scienti�c conference (Riga),

oral presentation �ZnO-embedded IrO2: a �rst-principles approach to electronic defects� (A. Chesnokov, D.

Gryaznov, J. Purans, A. Kuzmin, E. A. Kotomin, N. V. Skorodumova)

5. 29.03.2019, � The 77th conference of the University of Latvia (Riga),

oral presentation �First principles calculations on CeO2 doped with Tb3+ ions� (A. Chesnokov, D. Gryaznov,

E. A. Kotomin)

6. 20.02.�22.02.2019, � 35th annual ISSP UL scienti�c conference (Riga),

poster presentation �First principles calculations on CeO2 doped with Tb
3+ ions� (A. Chesnokov, D. Gryaznov,

E. A. Kotomin);

poster presentation �Exploring structure of defective Zinc Oxide� (A. Chesnokov, D. Gryaznov, N. V. Skoro-

dumova)

7. 06.04.2018, The 76th conference of the University of Latvia (Riga),

oral presentation �Electron localization e�ects in Tb-doped CeO2� (A. Chesnokov, D. Gryaznov, E.A. Ko-

tomin)

8. 20.02.�22.02.2018, 34th annual ISSP UL scienti�c conference (Riga),

oral presentation �Electron localization e�ects in Tb-doped CeO2� (A. Chesnokov, D. Gryaznov, E.A. Ko-

tomin)

9. 22.02.�24.02.2017, 33rd annual ISSP UL scienti�c conference (Riga),

poster presentation �Use of site symmetry in supercell model of defective CeO2� (A. Chesnokov, D. Gryaznov,

R.A. Evarestov, E.A. Kotomin)

10. 17.02.�19.02.2016, 32nd annual ISSP UL scienti�c conference (Riga),

oral presentation �Calculation of pure and doped cerium dioxide properties in bulk phase� (A. Chesnokov, D.

Gryaznov, M. Arrigoni, R. A. Evarestov)
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