Vislielākais burtu izmērs
Lielāks burtu izmērs
Burtu standarta izmērs
Reducing/cancelling the effects of vitreous floaters using a phase retrieval method based on coded diffraction patterns
Last Update

Project leader Varis Karitans

The project goal is to develop a non-invasive optical system and method for reduction/cancellation of the undesired effects of the vitreous floaters. The vitreous floaters manifest themselves as chains, bubbles and other structures floating in the field of view. These structures are actually transparent phase diffraction gratings. This problem causing the visual discomfort is experienced by about 80 % of all people. The problem will be solved using the method of coded diffraction patterns to measure the structure of these objects and modulate the light so that the effects of the floaters are reduced. The method of coded diffraction patterns is one of the most popular numerical methods for measuring the phase and structure of objects. This method is suited for measuring the optical aberrations, determining the structure of complexes of proteins, structure of crystals and other purposes. During the project the applicability of this method for designing a new type of wavefront sensors in astronomy and determining the structure of objects floating in microfluidic systems will be evaluated. Such studies are essential for Latvian industry by facilitating development of high-tech products and companies.

The project will be realized at the Institute of Solid State Physics (ISSP) in collaboration with the optics laboratiry at the Dublin University College. The project will be multidisciplinary and will be realized in the field of innovative materials and technologies – natural sciences (1.1 Mathematics, 1.3 Physical sciences, 1.4 Chemical sciences) and engineering sciences and technologies (2.5 Materials engineering). The project activities are related to RIS3 as its goal corresponds to the specified directions of transformation of national economy and the 1st, 2nd, 3rd and 6th priority of the economic growth. The project matches the following specialization areas: 1) advanced materials, technologies and engineering systems; 2) Information and communication technologies and key technologies identified by EC (nanotechnologies, micro- and nano-electronics, photonics, advanced materials and manufacturing systems, biotechnologies).

The total duration of the project is 36 months, the total cost is 133,805.88 EUR.