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Abstract: We propose a novel approach for characterising the electron spectrum of disordered crys-
tals constructed from a Hamiltonian of electrons as well as phonons and a diagram approach for
Green’s function. The system’s electronic states were modelled by means of the multi-band, tight-
binding approach. The system’s Hamiltonian is described based on the electron wave functions at
the field of the atom nucleus. Our novel approach incorporates the long-range Coulomb interplay
of electrons located in different lattice positions. Explicit interpretations of Green’s functions are
derived using a diagram method.Equations are obtained for the vertex components for the mass
operators of the electron—electron as well aselectron—phonon interplays. A system of equations for
the spectrum of elementary excitations in the crystal is obtained, in which the vertex components
for the mass operators of electron—electron as well as electron-phonon interplays are renormalised.
Thismakes it possible to perform numerical computationsfor the system’s energy spectrum with a
predetermined accuracy. In contrast to other approaches in which electron correlations are only
taken into account in the limiting cases of an infinitely large and infinitesimal electron density, in
this method, electron correlations are described in the general case of an arbitrary density. We ob-
tained the cluster expansion of the density of states (DOS) of the disordered systems. We demon-
strate that the addition of the electron-scattering mechanismsto the clusters is decreasing. This hap-
pens due to a growing number of positions in the cluster, which hang ontothe small parameter. The
computing exactness is fixed by a small parameter for cluster expansion of Green’s functions of
electrons as well as phonons.

Keywords:new theory; electron correlation; electron spectrum; Hamiltonian of electrons; thermo-
dynamic potential

1. Introduction

Breakthroughs in characterising the disordered systems are firmly connected with
the evolution of the pseudopotential method [1].The identical complication relates to
apseudopotential method [1]. Due to a limited description of the pseudopotential, the dif-
ficulty of pseudopotential transferability remains. It is impossible to make use of the nu-
clear potentials set through the possessions of some systems in order to characterise an-
other system. A fundamental breakthrough was accomplished duringthe research of the
electronic structure, as well as properties of the system due to the application of the ultra-
soft pseudopotentials developed by Vanderbilt [2,3] as well as the projector augmented
waves theory developed by Blochl [4,5]. The previously mentioned theory was extended
due to an application of the generalised gradient approximation (GGA) in the density
functional theory (DFT) of the many-electron structures, refined in the papers [6-10]. In
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the augmented projector waves method, a wave function of valence states for the electron
orbital (all-electron) is manifested due to the transformation via the pseudo orbital. The
pseudo orbital expands into the pseudo fractional waves in the augment region. The all-
electron orbital in the identical region is increased in size using the identical coefficients
via partial waves, expressed by the Kohn-Sham equation. The term for the pseudo-Ham-
iltonian that we possess, in the equation with the pseudo wave function, is obtained by
reducing the entire energy functional. From the previously mentioned equation, we can
obtain the electron energetic spectrum wave functions as well as the value of the complete
energy functional. The application of the method is very detailed, as described in [10] for
the crystal electronic structure computed by means of the VASP computer codewell-
known worldwide. By means of the cluster method’s calculations, as well as the GAUSS-
IAN computer code, this method may be applied for the explanation of the electronic
structure of molecules.

It is worth noting that in [11-19], recently straightforward productive computation
approaches of the electronic structure, as well as properties of large molecules, have been
suggested. The proposed approach is to build on the tight-binding representation and
functional density theory, which incorporates long-range Coulomb interplay of electrons
at different crystal lattice sites. Introduced approaches [6-19] are employed solely for the
interpretation of pristine-ordered crystals and molecules. Effects related tothe electronic
localised states, as well as lattice vibrations, happen at disordered crystals. These effects
cannot be characterised using the model for a perfect crystal. On this subject, other meth-
ods are also developing.

Crucial accomplishments in illustration of the effects of the disordered systems are
connected with the implementation of the tight-binding model for multi-electron scatter-
ing, which includes an estimation of the coherent potential. Beginning out of Slater’s and
Koster’s contributions [20,21], the tight-binding model was widely used in electronic
structure computations and in the explanation of the ideal crystal characteristics. Compu-
tations for the electronic structure of the alloy are based upon using the self-consistent-
method, namely the Korringa—Kohn-Rostoker coherent-potential approximations, which
are made in [22-24].

Calculations of the energetic spectrum of disordered crystals in our contribution
wererefined by the theory on the basis of the function of Green. Electronic correlations in
the crystal are expressed by means of themulti-band, tight-binding representation. Elec-
tron-scattering actions on the nuclei potentialsof atoms of non-identical types, as well as
on the oscillations of the crystal lattice, are included. Computations of two multiplications
of Green’s functionare derived from the temperature of Green’s functions[25]. It makes
use of a well-acceptedconnectionamong the spectral representation for two multiplica-
tions, as well as the temperature,of theGreen’s function [26].Computation of the temper-
ature for theGreen’s functions for disordered crystal is formed on diagram technics, ho-
mologous to diagram technics for homogeneous systems [26]. The equation package of
two multiplications of Green'’s functions of solids is obtained. Energetic spectrumcompu-
tation accuracy is based upon re-normalisation of the vertex parts of the electron—electron
as well as electron—-phonon mass operators.

2. Hamiltonian of an Electron-Phonon System of a Disordered Crystal

The disordered system’s Hamiltonian (disordered semiconductor or alloy)contains
the Hamiltonian of electrons at the outer nucleus field, the Hamiltonian of electron—elec-
tron interplay, and the Hamilton of the nucleus, as well as the Hamiltonian of electron-
nucleus interchange. The movement of an ion subsystem lessens to nucleus oscillations
nearby thebalance position under the influence of the nucleus interplay force, as well as
their indirect interplay via electrons. Using the Wannier representation, we can describe
the system’sHamiltonian as follows [25]:
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H=H,+H,, (1)
Consequently,the zero-order Hamiltonian is defined as:
Hy=H" +H} 2

Itcomprisesthe electron’s Hamiltonian inside the field of atom cores of the perfect-
lyarranged crystal:

HO =31 a' a,.
e ; niy,n'i'y' iy “n'i'y 3)
n'i'y

Additionally, it comprises the phonon harmonic Hamiltonian of the movement for

thecores of atoms in the ideally arranged crystal:

P 1

H;? = % #A;;l + 5 ; CD53(1,n'i'a'uniaun'i'a' 4)
In this place, cores of the atoms are placed in the periodic lattice (namely, the unper-
turbed structure is periodically arranged, and it is without disorder). The character n in-
dicates the unit cell, i indicates theith basis vector in the nth unit cell, and vy indicates an-
other quantum number for the orbital, inclusive of spin. Disorder will be introducedfor
the sort of core at the specific lattice area, whichdoes not needto be periodic through thep-
erturbed Hamiltonian term (view below). The character h® symbolises the “hopping inte-
gral” that links the relevant orbitals. For the phonon Hamiltonian, n and i are the same
variables as previously, that is, the unit cell and basis site inside the unit cell. At the same
time, a is the spatial direction (x, y, or z). Namely, P, describes the core momentum,

niow

M, describes themass of the core, u,, describes the variation of the core from the bal-

ance position of the lattice site, and @Eﬁlm,’,,&, describes the consonant springconstant ma-

trix. The interplay Hamiltonian in Equation (1) is the disturbance of the system caused by
all,includingby our effects. It contains six parts:

H, =80+H, + Hwh +H, + thc + th,,h (5)

3@ is the adjustment of the core—core Coulomb interplay caused by the addition to
the system’s disordered atoms; it is the distinction betweenthe initial core-core repug-
nance Hamiltonian and the new Hamiltonian. The electronic Hamiltonian is altered by
the term

_ +
Hec - Z Wm'y,n'i’y'ani'/an’i'y'
niy (6)

n'i'y’
This term is the difference betweenthe new hopping Hamiltonian as well as the orig-
inal periodic Hamiltonian. The electron-phonon interaction is described by the following
equation:

_ ' +
Heph - z v niy,n'i'y' ani'/an'i'y’
niy (7)

n'i'y'
A more detailed description is underneath. The Coulomb interaction Hamiltonian
among electrons is described by the following expression:
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ny,ny,

ny,ny 8
n =(niy). ®

The adjustment of the interplay of the phonons with thecores generated by the dis-
ordering of the atoms is described by the following expression:

1 _

thc = 5 Z AMni]tx,n'i'oc'Rlia})n’i'a’ +

1 ©)
+— Z A(Dniu,n’i'u’uniuun'i’a' >
where

AM! B L S 8 5.8 10
nio,n'i'a Mm.’ M[ nn' Vi’ oo’ ( )
AD o vier = Do v —(Di?i,",m, and M,, M, are the atomic masses at the site (ni)

for disordered alloys as well as for the ordered alloys.
The cubic anharmonic potential expressions are also included for the phonons. We
assume that phonons stand small and they can be handled perturbatively through

1
— (0)
thp/z - ; z q)niu‘n'i'tx',n”i”o("unia X
e (11)

0o

Xu

n'i'tx'un"["a”'
The operators a;iy, @, produce and dismantle electrons in the state described by

Vane’s function ¢, (&) = <§|niy> , where &=(r,c")is the spatial as well as the z-compo-

nent of the wave function of the spin coordinates.To build up the Wannier functions, we
employ analytical interpretations for the wave functions of an electron in the field of
atomic nuclei of kind A, restricted in the lattice sites (i) for an ideally arranged crystal:

Wm’ﬁ (r_rm' ) = Rf:l ( r _rm'l)Ylm (l’ _rm'j’

A (12)
Ylm [r _rm'j = Ylm (e’(P)’
where 0, ¢ are the spherical angular coordinates for the vectorr —r,,.
Here, 8 =¢&lm isasuperindexthat includesthequantumnumbersfortheba-

sisenergyeigenvalue & , thenormalangularmomentumquantumnumbers/andm,r is
theelectron location vector, and r,; is the location vector for the atom at place (ni) in bal-

ance.

r,=r,+p;

rn = zlvav’ (13)

r, isthelocationvectorofthejunction n ofthecrystallattice, p; isthevectoroftherespec-
tivelocationofthejunctionofthesublatticeiattheunitcell n . Vectors p, arelabelled as funda-

mentalrelocationvectorsofthecrystallattice, ~ thecharacterofwhichisdecidedbythedimen-
Thecoordinates l oftheradiusvector r

v n

sionofthecrystal.
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ofthecrystallatticejunctionareintegers. The number v takes on values v=1,2,3 for
three-dimensional crystals, v=1,2 for two-dimensional crystals, and v=1 for one-di-
mensional crystals.The basis orthogonalisation is carried out by means of the Lowdin ap-
proach [27]:

|‘Tfm<$> =857 |\Vni6>’ Sis.mis = <‘Vm'6 \Vn‘i'é‘> ’ (14)

where S, ; s is the overlap of the integral matrix.Vanefunctions ¢, (r,c"), where the sys-

tem’s Hamiltonian is described by Equation (1), are obtained from the following equation:
by (r.07) =5 (r =1, )2 (o) (15)

where y (c") —are the spin part of the wave function, y=6c .
The orthogonalised wave function may be written as follows:

5 _
Yois, (”1 ,0,,0, ) = Z Snzéiz,nlf]ﬁ' REZIZ (}’2 )lemz (92, D, ) (16)
ny 8,
In Expression (16):
l‘l =r- r}7|i| ’r2 =r- rnziz = rl - rnzizn,il ’

bl
(o 2 +(x? — 52 2 (= 22
=X xn2i2111i1 x xnziznlil x xnziznlil H

17)
x' =7sin0, cos,, x> =7 sin O, sin@,,x’ =7 cosH,,
o _ (2) (R o o
x}72i2n|i| - z(lv _lv v + piZ _pi| >
v
% cosf, —x
1 1 iy iy
cos0, = ———— " (18)
)
. 1
5 sm e1 COSPy =X, i ni
¢, = arccos (19)

7, (l—cos2 0, )%

Summation over n,i, in Expression (16) means summation over r,, , in accordance

withFormula (13).
The overlap matrix S, is defined by the following equation:

mi Sy myird,

. : (20)
J.J‘J.Ré‘l, (rl )Y/|m| (e] P )Réz/2 (rz ) Y/Zmz (92 >, ) ”12 sin 0,drd0,do,

wherer,,0,,¢, are expressed through 7#,0,,¢, in accordance with Formulas (17)—(19).

The procedure for calculating the matrix elements of the Hamiltonian (1), based on the
use of Formulas (17)—(19), is described inRefs.[28,29].

3. The Electron and Phonon Green's Functions

We use Green’s function formalism for our numerical computations. Ultimately, we
should have the real-time retarded G/”(¢,¢') as well asadvanced G.*(t,t") Green’s func-
tions. These are defined by the following equations [25]:

G*(t,t" = —%6(1 —t") <[A(t), B(1t"] >, (21)

G (t,1) = %O(I' —1) <[A(1), B(t")] >.

The operators are written using the Heisenberg representation:
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g(t) — eiH l/hA e*iH t/hl (22)

where#i is Planck’s constant, H=H - N,, p, is the chemical potential of the electronic
subsystem, and ~, is the electron number operator given by
_ +
Ne - Zam’yaniy . (23)
niy
It is well-known that a commutator or anticommutator is described through

[4,B]= ABF BA, (24)
In this expression, a commutator is employed for the Bose operators (-), whereas the anti-
commutator is employed for Fermi operators (+). Here, a symbol 6(¢) is Heaviside’s unit
step function. Here, the angle brackets (...) describe the thermal averaging connectedto

a density matrix @
<A> =Tr (pA), p=e“e, (25)
Here, Q is a thermodynamic potential for the system described using exp(Q/®)=Trexp(-

H/®) and ©=k,T, with kas the Boltzmann's constant, but 7 defining a temperature. It

is worth noting that although real-time Green'’s functions areseemingly dependent on the
two different time moments, due to time-translational invariance for the equilibrium sys-
tems, in reality, this function is only dependent onthe time difference t-".

The approach developed by us forcomputing the real-time Green’s functions acts in
accordance with the standard one.Namely, as a starting point, we determined the thermal
Green’'s functions (defined below) and analytically developed them to the real-time by
means of the well-knownspectral relations. The thermal Green’s function is written as fol-
lows:

G (1,1 = — < T.A(1)B(1") >. (26)
In this equation, the imaginary-time operator A(t) is obtained from a real-time Heisen-
berg description using the following substitution f =—ifit. Consequently,
A(y=ée""a e, (27)
Furthermore, the time-ordering operator satisfies the following relation:
T A(1)B(t) = 0(t—1)A(1)B(r) + 28
+0(t'—1)B(t) (1) '

In this equation,the plus sign is used for the Bose operators, whereas the minus sign is
used for the Fermi operators. As a next step, we introduced the operator in the interaction
representation

o(t)=eb e, (29)

withH=H, + H,, and H,=H,—p,N,. Applying the differentiation for 0(T) in Equation
(29) regarding the t and after integrating from 0, and taking into account the boundary
condition 6(0) =1, we obtain

o(t) =T, exp{— [ H, (x)dx } (30)

where H, (1)=¢""H,_ e . Employing this result yields
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A(r) =o' (D A(1) (1), (31)

whereA(t) is Heisenberg presentation regarding the non-interacting Hamiltonian.Replac-
ing the obtained results in the descriptionof the thermal Green’s functiongeneratesanother
interaction—presentation form for the Green'’s function, specified as follows:

_<LAMB(t)s(l/0)>,
<o(1/0) >,

G*®(1,1") = (32)
In this equation, time dependence regarding the non-interacting Hamiltonian, as well
as the trace over all states regarding the non-interacting states, is as follows:

<A>,=Tr(p,A), p, =™, (33)

The previous equation creates an opening point for the perturbative extension used
by us. This diagrammethod is created by expanding o(t) in a power series using the terms
of H, (1) and then applying Wick’s theorem in order to estimate the resulting operator
averages [25,26].

Summing up the indicated series, by using the standard relation between the spectral
representations of the temperature and real-time Green’s functions,and performing an an-
alytical continuation on the real axis, we obtain the following equations for the retarded

Green’s functions [25] (it is worth noting that the dependence from r is subdued):

. -1
G (e) = [a —H —(w+E,,(6)+ X, (s))] ) (34)
5 -1
G™ (g) = |:(,\)2M(0) _Q)(O) _{;—2 AM + AD +2phe(8)+2phph (8)]:| 7 (35)
82
G" () =§(M Oy G"(e), (36)
where
Hél) = ||h)(lf:/)‘)7'i'“{' 4 (37)
o =, .|, (39)
M«]) = ||Mi6nn'6ii'6<xa'"’ (39)
AM =|(M,-M,)8,,8,8,,|.e = ho. (40)

Here, G (g), G"(g), and G”(g) are the real-frequency descriptions for the single-
particle Green’s function ofelectrons, the coordinate-coordinate and momentum-momen-
tum, as well as the Green’s functions for the phonons.X_, (¢), Z,.(e), Z,.(€),andX oipn (€)

are the corresponding self-energies of the electron—phonon, phonon-electron, electron—
electron, as well as phonon-phonon interactions.The electron Green'’s functions are infi-
nite matrices.They have the indices specified by the lattice site n and the basis site i as well
as the other quantum number y. Likewise, the phonon Green’s functions are also bound-
less matrices with the matching lattice as well as basis site dependence, plus a dependence
on the spatial coordinate direction a. The mass operator of Green’s function of electrons
for the electron-phonon interplay X, ,(t,t') is characterised by the diagram in Refs.

eph phe

[28,29].Straightforwardly, the electron-phonon self-energy becomes
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1 7 g' (0)mi
— U 0y
Zeph niy,n'i'y'(s) - _4_7'Ei J‘ dg'coth % I niy, nyisy; X
uu v uu * '
X [G’llilalv”ziz"vz ( ) G”]‘l"vl ylh 0y ( )j| 3i3Y3 5 glgY g x

X(S —g l)l—*nz[z.az

nyigya,n'i'y' 2

(41)

F(O-).n]i]a-]. — Vllﬁilal- ) (42)

nry, mizYs nry, misy3

There, we added repeated indices. Summation is conducted over repeated indi-
ces.Phonon-electron interplay is reported using the diagram in Refs. [28,29].

The mass operator that characterises the electron—electron interplay is described as
follows:

phe nia,n'i'o’ (8) N, J. ds f(s ')r n lnﬁ,l/(j,nlll/l

[ aa” * [
([ Gt i, (580 =G, (680 |

G“ " (eN+G™  (e+g') x

n4igY g Mol Yo ’7|l| Y1730373

+ox
aa [ aa [
X|:Gn4i4y4,nzizyz (8 ) GnAiA"/A,nzi:y: (S ):|} x
it
[CLYER U P

(43)

where f(€) is the world-well-known Fermi Dirac distribution function.
Diagrams of the mass operator Z,(t,1') that characterise the electron—electroninter-

play are depicted in Refs. [28,29].
The mass operator that characterises the electron—electron interplay is described

asfollows:
m @)
Zee niy,n'i'y' (8) Z(e niy,n'i'y' Zee niy,n'i'y' (8) s (44)
0, = jde £(e) TG e)-G, (@) (45)
20, (e ( j Ids _[als2 (e,)0 ) ‘”””‘ (46)
x[G;’:;S( —2)Gi (e) -
~Gy (-5, —e,)G, (&) ]

<G, (s» G, (e)]

(G, (o= -2,) -G, (58 -, |
<[ G (6) G, (22)

-Gy, ()G, (ea) [T,

(0)n,ny ~(2)n,ny (2)n,ny (2)n,n

=V =v, =V, 7 n=niy (47)

ny,m .0 ny,m Ly

Related outcomes to the addition for the phonon self-energy X, ,(€), coming out of

the phonon-phonon coupling, arealso described in Ref. [25].
We now obtain equations for the vertex parts of the mass operators of electron-pho-
non, phonon—electron, and electron—electron interactions, represented by Equations (41),
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(43), and (46).In general, the renormalisation for the apex of the functions entering Equa-
tions (41), (43), and (46) for the mass operators could be carried out employing the dia-
grams in Refs. [28,29]. Namely, we have

o0
ni'a _ (o) _ 1 ( )F(O)nvivonv
r";’é"/p”ﬂfﬂ _r”3f3“13~”4i4Y4 2mti de & nsisYs gl Y6
—0

+ + + +
aa aa aa”* aa’ (48)
G ()G (6)-G L (6)G ()
|:G’1(»’5V6a”7’7‘/7 & G”xlxi’xansleS & G”(»'(»Vﬁ»"7'7‘/7 & G”xlex»"sles &
(0)ngigar uu iy OL
<[ G . (O)F‘”.'” 0
M7l7¥7 518188 NglgQly »TTygl1gChi 313735141474

and

r :jjn;, _ F(O) n5',116 _L J' dgj(g)l_,(:) ns.,ng

e 2mi o

-0

X|:Gaa' (s)Gaa** (8)_Gaa** (S)Gaa' (8):| (49)

ny ,ng ng,nyg ny ,ng ng,n

X" n = niy.

'
mg,n'?

Summation is implied over repeated indices in Expressions (48) and (49).
The Fermi level &, =y, for the arrangement is resolved using the following equa-
tion:

<z>= [ /@ g.0)de, (50)

1
fle) =
exp(s_(;F ) +1

D)

where< Z > means the mean number of electrons per atom and g,(¢) is the many-body
electronic density of states, which fulfil the relation

1 .
ge(a):—m Im Tr<G“” (8)> (52)

where <>C indicates configurational calibrating of the disorder, N is the amount of the

primitive lattice cells, and v is the number of atoms by the primitive cell. We let the letter
cfall on the configurational calibrating in order to make our equations more simple. In
Equation (50), variable (Z) describes the average amount ofelectrons on the atom.

4. Density of Electronic and Phononic States

In Equations (34) and (35), due to the introduction of the mass operator equal to the
sum of the one-site operators as well as by selecting as a zero approximation the effective

medium of Green’s function, the cluster expansion for Green’s functions G* (¢) and
G"(e) was performed. The described expansion is the cluster expansion’s generalisation

for Green'’s function G* (g) of the single-particle Hamiltonian.Green’s functions of the
effective environment are defined by the expressions:

G @) =[e-h" -5, )L, -0,(c)], (53)

5 -1

Fes ~
MO -0 -5 (e)-c,, ()] - (54)

/3

G"(e)=
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Expressions for the operators £, (¢), %, (¢), and %, (e) are obtained from the ex-

phe

pressions for the mass operatorsX,_, (), 2, (¢), and Z,,(¢) (41)—(47) by replacing the ver-

(0)miyoyy (0)n,n;
niy, mizys 7y ,m

tex partsI' ,n =niy by their expressions for ideally ordered crystals and re-

placing the Green’s functions G (g)and G" (¢) with the Green’s functions of the effec-

tive medium, G* (¢)and G" (¢) . Expressions for operatorsc, (¢) and & (&) in Formulas

(53) and (54) will be given below.
The Green'’s functions in Equations (34) and (35) persuade the Dyson equation, which
may be written in terms of the T-matrix through

G(e)=G(e)+G(e) T(e) G(e), (55)
in this expression, the T-matrix is characterised by a series, where each termexpresses the
scattering of clusters with different numbers of nodes schematically described as follows:

T = Zt""" + Z T miomt (56)

(miy) (miy)#(nyiy)

Here, we have
A o~ ~m-l o~ ~
T(Z) miy,mb [1 _tnlrl Gt”zlz Gj| tnlzl th:x: |:1 + th]z] :' . (57)
where /" is the on-site scattering operator, which is described as follows:

tnlil _ ’7[ _(ani] _ Gn]il )G'l—] (anil _ Gmil ) . (58)
The self-energy employed in Equation (34), £ (¢), satisfies

W, () + 2, (6)-Z,,(e) - L. (e) = 2T (e) (39)

For the electrons. For the phonons, we have

2

;—ZAM +AD+E , (e)+Z,,,(e)— (60)

S (e) -2 (e)= Y =i (g)
Using Equations (34) and (59),we obtain the expression for the intrinsic energy part

i  (g), which describes the scattering of electrons:

eniy,n'i'y

Z)JH}“'”[ (8) — W?mi

emiYy by, MYy,
~ (2)miyyyngigYy oy ;ni _ 7 hmyni ), 61
+ Z ‘}n]ilw,/l,nzizy2 (Z’lsiz"/w’u‘hh Z”zis”/3<"4i4"/4 ( )
13373
Ny4lgYy
where
1 ©
hamy;ni _ aa*
Z”;i;”(;a”4i4“(4 -0 J. f(S, SF) Im<G":i:Yw"4i4Y4 (8)> . dS : (62)
T it (ni)ehmy;
= ki, jni . . . . . . .
The valueof Z,7" . = in Equation (61) is obtained from Equation (62) via replacing

of the fullGreen’s function via the effective medium Green’s function. The matrix diagonal

elements Z7" in Equation (62) are similar to the occupation numbers for the electron

mi3Y3 .14l

states Z " (see Refs. [28,29]).

nidc
Using Equations (35) and (60),we obtain the expression for the intrinsic energy part
Thal .(¢), which describes the scattering of phonons:

phnio,n'i'a
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2

i €

221111111‘(1,11'1"&'(8) = ?(Mi, _Mk )Snn’sii'saa’ (63)

It should be noted that, in the infinite crystal limit, on the right-hand side of Equa-

tions (61) and (63), the terms inversely proportional to the number of lattice sites are ne-
glected. We require the fulfilment of the condition

(") =0, (64)
from which follows the system of coupled equations for the operator in Formulas (53) and
(54)

0! ()= ([1- (0 @)~ NG @) -
7 5
x([1- (2 (6) =0l (NG @1'Z! (6)
. . . ~ -1
ol (e) = ([1= (20 () =0 ()G ()] ) .

x([1- () ()~ o5 (NG ()] "2 (2))

The matrix elements for Green’s function for the electron subsystem of the effective
medium can be effectively computed by means of Fourier transformation:

_ 1w Au .
G:il‘l/,n’i’v'(g) = _sz[j{ax/(k’ S)elk(rm " )’ (67)
N
G (ko) =(e~HA (k) (68)
where
H(k, g)=h" (k)+i€ph (k,e)+Z, (k,e)+o,(k,g), (69)

N is the number of primitive unit cells. We performed an equal course of action for
the effective medium-phonon Green’s function, which satisfies

Suu 1 Auu ik (1~
Gm’q,n'i'cc' (8) = F Z Gi(x,i'oc' (k9 8)@ K6 ) (70)
k

G"(K,8) = (;—iM‘m —é(k,s)j , (71)

There, we have

B (loe)= 0 (K)+5,, () + £, (o) + 0, (2), 72)

Mi(o?)i'q' :Misii' 801(1‘ ! (73)

It is worth noticing that the wave vector k fluctuates inside the first Brillouin zone.

The Fourier transform for a mass operator of the electron—phonon interplay has the fol-
lowing form:
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< 117 3
> o (k,g)=————| dg,coth| ——
eph iy,i'y ( ) 41_” N 1 (29]
XZ r iy l]‘a; _k’k_k] )[G"‘Z Jin0y (k € ) GIT;I*IZO.Z( ]81)] (74)

<G (k-k,e—g )% L (~k+k k).

B3Y3,14Y4 [AZEAS

The Fourier transform of the phonon-electron interaction mass operator is:

L prenara (8 )=——jda FE)I T (k. k+k)
{[G’?f/ll 373 (k+k1’8+8) GI”;’ h; (k+k1’8+81)] (75)
‘AYAI/z(k 8)+G1a;llhyx(k+k1y8+81)

|:G’Za14 iyYy (k € ) G:(:a Yy (kl’sl):|} r ix((lx igYq ( k- kl’kl)

The vertex parts of the mass operators of the electron—phonon as well as phonon in-
terplays are determined using the following equation:
e (k,k F'“kk—llwd
B3Y3,474 ( ) [NERAN ( 1° 2) %N I 8f(8)

—0

er% k, +k, —kg.k;)

X|:Gle“/6 Y7 (k S)G’::/Ix isys ( kl _k2 +k58) (76)

=G, (keo8) G, (=K, +ke)

16Y6-17Y7 3Yg-1sYs

xTOP% (kg,—k, —k, +k; )G . (K, +k,,0)

AR igClg 5Ty

<Ll (kK +k,).

137351474
In Expressions (74)—(76)

o (k.k,)=

iv15hY2

Zvn'fi‘;,w exp(zk ( r,. rm.)+ik2 (1’,12,.2 —rm.)). (77)

sty

The Fourier transform for the mass operator of the electron—electron interplay can be
written using the following expression:

eL iy,i y (k S) Zg)t/ i y (k) zii)ﬂ{[ y (kf 8) 7 (78)
< 11
0 (k)=———=

e ( ) 2ni N

j dS] /y t) ;7% i (_k7_k] akl ) (79)

[GJ"Z )G Gt

1 o0 o0
20 (ke)= (27”} —ZJ;del:Ldsz
xf () f (e,) > T (—k, -k, -k, + k,k,)

kiky

(80)
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{[Glaj JisTs (k—k -k, e—¢ —¢ )Gaa s (K€ —

LY AN

G (KK —ky 8- -Gl (ke |

bY2isYs WY15iYs

X[ G (k) =Gl (Kysey) |

[G”" (k—k,—k,,e—¢ —¢,)

Y2575

-G (k-k,—k,,e—¢ — 82):|

YRS

X|:G1171 isY4 (k & )Gl:‘:f; 373 ( 2)

G ()G, (e )

<[ :s{ 'f;“ (k, +k, -k, -k, k).

The vertex part for the mass operator of electron—electron interplay is determined
using the equation:

Flosine (k, K, k, ) =T Wi (k| Kk, k)

igvg.i'y! lgyaoi'y"

- J d f Zl"w:i:’;/:% k ,kz,k4)

[G;;‘; o (K8) G (<K, —k, —K,,6) (81)
_G:[flv 179 (k S)G’:‘:x fioY10 ( k, -k, _k458) ]
XD ptote (K, +k, +K,, K, k).
In Expression (81),
T (ol =
> o) exp ik (r,, —x,,))
(82)

><exp(ik2 (rnzl. )+1k ( L —rm.)).

Cluster decomposition for the Green’s function of electrons and phonons of disor-
dered crystal may be derived from Equations (55)-(58). The density of electrons” and pho-
nons’ states are presented as an infinite series. Here, the procedure of scattering on clus-
ters with different numbers of atoms are described by each term. It is shown that the con-
tribution of the scattering procedure to electrons as well as phonons in clusters decreases
with the increasing number of atoms in the cluster by a small parameter.

We have shown previously [25,28,30] that the above-mentioned parameter stays
small when many parameters of the system are changed, except possibly for narrow en-
ergy distance near the band edges.

By abandoning the input of activity of electron scattering at clusters containing three
or even more atoms, which are small using the above-mentioned parameter for the den-
sity of electronic states, it is possible to obtain [28,29]:

— > BMgiw(e) (83)
Vg0, my
1 nd d i N g [ oy
s =——1Im {G+G "G+ 5 P
T =)
L my (84)

E}

% G |: tx'm,,/z/ i T(z)xmh, 0i,)/myylj j| é

}01’60‘,0[65
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T Okl _ [ [ fom 0 étx'm;;,z/‘ér

. o i (85)
x {Mmi (),'G[?un»,‘r/l/ [[ G or]

Likewise, averaging for the phonon Green’s function G*(g) produces the phononic
density of states [28,29]

1 r
gu(e)==2 P (),

ik

(86)

o (87)

0io,0ic

xG [Zk’lj 4 TR 00 ] G } |

where G=0"(®)

gy /by

In Equation (84), P~/ is the conditional probability to find the atom of type A’

in the site(lj) containing the magnetic moment . ,0on the condition that hesitesin the unit
cellinorigin (0i) have the atom of A type with the magnetic moment mai. £/ is the amount
of the matrix constituent for the single-centre operator of scattering for the occasion where
the atom of variety A is located at site (ni) and has a magnetic moment mai(seeRefs.
[28,29]).This method for describing electron correlations in crystals is consistent with the
approach described inRefs.[31,32].

For an ideally ordered crystal, the Green’s function in Equation (55) is
G(g)=1imG(¢),0(e) >0, (88)
Where Green’'s function G(z—:) is described using Equations (53), (54). The energies of the

electrons and phonons of the crystal are determined using the equations of the poles for
the Green’s functions

det|e5,.5,,, — H,, .. (k.&)| =0, (89)

'y
2

det %M.S By =B (KoE)[=0 (90)

i aa'

where H,

iy,i'y'

(k,a) , @, ... (k,€) is described by means of Equations (69) and (72).

5. Energy Spectrum of Graphene including Adsorbed Potassium Atoms

To calculate the electron spectrum of graphene with adsorbed potassium atoms, we
chose the wave functions of the 2s and 2p states of neutral non-interacting carbon atoms
asthebasis. In the calculation of matrix elements of the Hamiltonian, we took three first
coordination circles. The energy spectrum for graphene was computed employing the
temperature T = 0 K. In our computations, we disrespect the re-normalisation of vertices
of the mass operator of the electron—electron interplay. We consider the limiting case of
an ordered arrangement of potassium atoms on the surface of graphene. The dependence
of the electron energy on the wave vector is calculated, in this case, on the basis of the
Equation (89) obtained in the work for the poles of Green’s function.
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In Figure 1, we exhibit the reliance of the electron energye in graphene with ad-
sorbed potassium atoms on the wave vector k. Thevector k is focused from the I'-pointto
the Dirac point, namely the K-point.

>
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7 K K
r
-6 T T T T T T
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k
0.00 ~
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>
~
&
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Figure 1. (a,b) Dependency for electron energy ¢ at the wave vector k in the graphene
containing potassium impurity.

In Figure 1, the formative periodic separation from the potassium atom to the carbon
atom is equal to 0.28 nm. It is possible to see from Figure 1 that, in the system atisedad-
justment of potassium atoms, the gap at the graphene energy spectrum emerges. Its nu-
merical valueis dependenton the concentration of adsorbed potassium atoms, their posi-
tion in the unit cell, as well as the distance to carbon atoms. We fixed that, at thealike
potassium concentration, that the unit cell contains two carbon atoms and one potassium
atom, where the potassium atom is placed on the graphene surface over a carbon atom at
the separation of 0.286 nm, and the energy gap is equal to 0.25 eV. The position of the
Fermi level at the energy spectrum bank on the potassium concentration is at the energy
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distance -0.36 Ry <¢, < Ry0.36 . Such a position occurs if the graphene is put on the po-
tassium support.

6. Conclusions

Our contribution reveals an original method of characterisingthe electronic spectrum
for thedisarrangedcrystals based on the Hamiltonian of electrons as well as phonons, and
a diagram approach for the Green’s function finding. Electronic states of the system
werecharacterised using a multi-band, tight-binding approach. The Hamiltonian of the
system was described using the wave functions of electrons at the atom nucleus field. The
proposed approach containsa long-range Coulomb interplay of electrons located at differ-
ent sites ofthe lattice. Exact formulations for Green’s functions were derived using a dia-
gram method. A system of equations for the spectrum of elementary excitations in an ideal
crystal was obtained, in which the vertex components of the mass operators of electron—
electron and electron—phonon interplays arerenormalised. Thismakes possible the perfor-
mance of numerical computations of the energy spectrum for a system with a predeter-
mined accuracy. In contrast to other approaches in which electron correlations areonly
taken into account in the limiting cases of an infinitely large and infinitesimal electron
density, in this method, electron correlations are described in the general case of an arbi-
trary density.Cluster increase is derived for the density of states of disorganisedsys-
tems.We show that the addition of the electron scattering process to the clusters is de-
creasing across the augmenting number of places in the cluster, which is dependent on a
small parameter. The calculation precision is decided bya small parameter of cluster en-
largement of Green’s function for electrons as well as phonons.

We have discovered that, at the potassium concentration equal to such that the unit
cell contains two carbon atoms as well as one potassium atom, the potassium atom is-
placed on the graphene surface upon thecarbon atom at the separation of 0.286 nm, and
the energy gap is equal to 0.25 eV.Such an event happens ifthe graphene puton the potas-
sium is supportive.
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