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Abstract: First-principles density functional theory (DFT) is employed to study the electronic struc-
ture of oxygen and gallium vacancies in monoclinic bulk β-Ga2O3 crystals. Hybrid exchange–
correlation functional B3LYP within the density functional theory and supercell approach were
successfully used to simulate isolated point defects in β-Ga2O3. Based on the results of our calcu-
lations, we predict that an oxygen vacancy in β-Ga2O3 is a deep donor defect which cannot be an
effective source of electrons and, thus, is not responsible for n-type conductivity in β-Ga2O3. On
the other hand, all types of charge states of gallium vacancies are sufficiently deep acceptors with
transition levels more than 1.5 eV above the valence band of the crystal. Due to high formation
energy of above 10 eV, they cannot be considered as a source of p-type conductivity in β-Ga2O3.

Keywords: DFT; β-Ga2O3; oxygen vacancy; deep donor; p-type conductivity; point defects

1. Introduction

Gallium oxide (β-Ga2O3), well known for its unique optical and electrical properties,
as a semiconductor with a wide band gap (4.9–5.0 eV), has shown a constantly growing
interest as a promising material in different fields of power electronics, optoelectronics,
and photonics in recent years [1–3]. It can be said, that since the beginning of the century,
β-Ga2O3 has undoubtedly been one of the most intensively studied materials for energy
devices. This was initially caused by a large expected electric breakdown field (~8 MV/cm)
for its most widespread and technologically promising monoclinic β-modification [1].

Later, as a result of extensive studies, β-Ga2O3 demonstrates a very wide range of
different potential applications in high-power field-effect transistors [1], Schottky barrier
diodes [4], solar-blind ultraviolet photodetectors [5], scintillator and phosphor materi-
als [6–8], efficient photocatalysts [9], and so on.

A deep understanding of the influence of intrinsic point defects is necessary for
the successful application of any material, including a semiconductor. Almost always,
point defects directly or indirectly affect and determine the doping and compensation
processes, the lifetime of charge carriers, the corresponding migration processes, as well
as the efficiency of the different luminescence channels. They also contribute to and even
determine the diffusion mechanisms responsible for device degradation.

Interaction and mutual influence of vacancies and dopants only complicates the
picture and requires detailed and careful consideration. In the case of β-Ga2O3, it is
assumed that oxygen vacancies, being rather shallow donors with an ionization energy
of ED ~0.04 eV, determine its behavior of n-type semiconductors [10]. However, many
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first-principle calculations devoted to the study of oxygen vacancies in β-Ga2O3 suggest
that they are rather deep than shallow donors with charge transition levels below 1 eV from
the bottom of the conduction band [11–16]. It is worth to noting that the formation energy
of vacancies and, consequently, transition levels of energy in the gap strongly depend on
the corresponding band gap evaluation. Proper estimation of the band gap is a major point
in a way of correct evaluation of transition levels, as shown by Zacherle et al. [12] and
Varley et al. [17]. In our previous hybrid B3LYP study on oxygen vacancies in β-Ga2O3 [18],
it was shown that vacancies create deep donor levels and no have contribution to observable
n-type conductivity. Other theoretical calculations have shown that, most likely, shallow
donors should be attributed to H or Si impurities in β-Ga2O3 [17]. On the other hand,
several other publications reported that Ni-, Zn-, Cu-, and N-doped β-Ga2O3 demonstrated
p-type semiconductor characteristics [14,19–23].

In this paper, we report first-principles DFT calculations of electronic properties of
oxygen and gallium vacancies (VO and VGa) in β-Ga2O3. The calculated defect transition
levels and corresponding defect formation energies obtained in this work are of decisive
importance for direct explanation of the experimental results. Furthermore, performed
detailed analysis of vibrational spectra will allow constructive identification and detection
of defect-induced Raman modes, which may represent the only possibility to characterize
such defects at the fundamental absorption edge of β-Ga2O3.

2. Computational Methods

Calculations that were performed in this work used the global hybrid functional
B3LYP [24], respectively, implemented in the CRYSTALl17 program [25]. The all-electron
Gaussian-type basis sets (BS) for Ga (8s-64111sp-41d) and O (8s-411sp) atoms were taken
from Refs. [26,27], respectively. The total energy convergence threshold for the self-
consistent field (SCF) procedure was chosen at 10−7 and 10−9 Hartree for both structural
and frequency calculations, respectively. For the geometry optimization, the quasi-Newton
scheme was used, as implemented in the CRYSTAL17 code. Gradients are estimated every
time the total energy is computed, the second derivative matrix (i.e., Hessian matrix) is
accordingly constructed from the gradients and updated by BFGS algorithm. Optimization
is considered complete when change in energy between steps is below 10−7 a.u. and
default gradient and displacement criteria are satisfied. The effective atomic charges, as
always, were determined using the Mulliken population analysis [28]. To simulate the
point defects in a crystal, the periodic model of an extended unit cell (supercell) was used,
and calculations were performed on 80 atoms supercell. The required different charge
states of the defect were simulated by adding or removing or electrons to the supercell. To
maintain electroneutrality, a compensation background charge was used. The integration
of the reciprocal space was performed with a Pack-Monkhorst 4 × 4 × 4 grid [29], resulting
in 24 k-points.

The formation energy of a defect D with a charge q in a system X is defined as:

E f = Etot(D)− Etot(X) + ∑i niµi + q(EF − EV) + Ecorr (1)

where Etot(D) and Etot(X) are the total energies of the system with and without a defect, ni
represents the number of atoms of the element i that are removed from the system when
a defect is formed (a negative value for ni means the addition of atoms), and µi is the
chemical potential of the element i that presents the energy of atoms that are removed
(or added) into the system when a corresponding defect is formed. The necessary study
was carried out for both oxygen-poor and rich conditions, using molecular O2 as a dopant
source in the gas phase. The fourth term q(EF−EV) represents a change in the electron
energy due to the exchange of electrons and holes with the carrier reservoirs. EF−EV is the
Fermi energy relative to the maximum of the valence band of a defect-free system. Ecorr are
corrections which account for a defect–defect interaction and energy offset when the system
is charged. We take the chemical potentials of the O2 molecule (oxygen-rich condition) and
also the metallic Ga (oxygen-poor condition) as a corresponding limiting phase. The fifth



Materials 2021, 14, 7384 3 of 12

term is a Makov–Payne correction term to compensate the artificial interaction between the
periodic images of point charges [30].

For determination of the corresponding charge state transition levels for various
defects, we used the approximation described by Lany and Zunger [31], based on the
previous study by Scherz and Scheffler [32], stating that the transition level is the Fermi
energy, at which the formation energy of a charged defect is equal to that of a neutral defect:

Etot(D, q)− Etot (X) + ∑
i

niµi + q(ε(q/q′)− EV)

= Etot(D, q′)− Etot(X) + ∑
i

niµi + q′(ε(q/q′)− EV) + Ecorr

thus

ε
(
q/q′

)
=

Etot(D, q′)− Etot(D, q)− Ecorr

q− q′
+ EV (2)

As usual, the zero energy reference was chosen at the top of the valence band. We
considered cases in which an electronic charge is added to the system, i.e., the state q’
corresponds to a state with an extra electron. Furthermore, q+1e corresponds to a transition
from a neutral state to a negatively charged state, ε (0/−1), or vice versa.

3. Results
3.1. Atomic and Electronic Structure of Bulk β-Ga2O3

It is well established that there are five crystalline modifications for Ga2O3, namely
α, β, γ, δ, and ε, among which the β modification is the most stable under ambient
conditions [1–3]. In particular, β-Ga2O3 has a monoclinic crystal structure, as commonly
denoted as C2/m. The corresponding unit cell of β-Ga2O3 is shown in Figure 1, (see
also [18]), where a⊥c, b⊥c, and the angle between a and c axes is 104◦. The crystal lattice
parameters are a = 12.19 Å, b = 3.05 Å, and c = 5.82 Å. It is important that there are two
distinct Ga sites, shown as Ga(1) and Ga(2) (Figure 1). The Ga(1) atoms are bonded to
four neighboring O atoms in a (roughly) tetrahedral arrangement, while the Ga(2) atoms
are in an octahedral environment and are bonded to six neighboring O atoms. Note that
not all bonds that extend to atoms in neighboring unit cells are shown in Figure 1. The O
atoms have three distinct sites: O(1) and O(2) are bonded to three Ga atoms, while O(3) is
combined with four Ga atoms, with the Ga–O bond lengths range from 1.8 to 2.1 Å.
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Figure 1. Schematic representation of the crystal structure of monoclinic β-Ga2O3. Unique positions
of Ga and O atoms in the lattice are shown [18].

For perfect β-Ga2O3, the basic bulk properties are calculated (Table 1) using various
DFT functionals. As can be seen, the hybrid density functional theory methods give
better agreement with experiment in terms of the energy gap Eg, cohesive energy Ecoh,
and average dielectric constants ε, than in the case of the HF method and the standard
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DFT-GGA functionals, e.g., PBE. The corresponding Mulliken’s analysis performed clearly
showed a slight difference in the ionic charge on atoms with different positions in the
crystal, which is associated with the anisotropy of the electronic properties [q(Ga1) + 1.48e,
q(Ga2) + 1.58e, q(O1) = −0.994e, q(O2) = −0.997e, q(O3) = −0.079e], as well as a considerable
covalency of the Ga–O bonding (~0.2e).

Table 1. Bulk characteristics of pure β-Ga2O3 as calculated by means of the DFT-LCAO method in
this study. The lattice parameters a, b, c as well as band gap Eg values were calculated earlier and
adopted from [18].

HF PBE B3LYP Exp

a, Å 12.19 12.34 12.34 12.12 ÷ 12.34 [2]
b, Å 3.05 3.11 3.09 3.03 ÷ 3.04 [2]
c, Å 5.82 5.90 5.87 5.80 ÷ 5.87 [2]

Eg, eV 13.8 2.36 4.49 4.9 [33]
Ecoh, eV −4.33 −7.08 −8.36 −11.3 [34]

ε∞(average) 2.38 3.67 3.14 3.57, 3.38, 3.53 [34]
ε0(average) 8.06 10.61 9.6 10.2

The apparent weakness of indirect transitions and the fact that the corresponding
difference in energy between the indirect and direct gap is small actually makes β-Ga2O3 a
direct gap material, which is consistent with the experimentally observed abrupt onset of
absorption at 4.9 eV.

The B3LYP-calculated values of the optical dielectric constant ε∞ give refractive index
1.8 (n =

√
ε) for β-Ga2O3 at zero pressure that is in a good agreement with previous

theoretical studies and well-known experimental values 1.84 [35], 1.88 [35], and 1.89 [36].
The calculated density of states and corresponding band structure of β-Ga2O3 are

shown in Figure 2. The top of the valence and the bottom of the conduction band are
consisting mainly from anionic O 2p states and cationic Ga 4s states, respectively [10,37].
We find an indirect band gap of 4.89 eV, with the valence band maximum (VBM) located
near to the M-point, which is slightly smaller than the direct band gap of 4.91 eV at the
Γ-point. The corresponding analysis of the dipole matrix elements shows that, although
the vertical transitions are of the dipole-allowed type at the Γ point and at the VBM,
they are about an order of magnitude weaker at the VBM and quickly decrease to 0 at
the M-point [38]. The apparent weakness of the indirect transitions and the fact that
the corresponding energy difference between indirect and direct gaps is small actually
makes β-Ga2O3 a direct-gap material, which is in good agreement with the experimentally
observed sharp absorption onset at 4.9 eV [33]. The obtained results of β-Ga2O3 are in good
agreement with previous studies using the pseudopotential plane wave approach [33] and
the full-potential linearized augmented plane wave method [12]. Good agreement of the
calculated electronic and structural properties with the experimental data gives confidence
in the correct prediction of the transition levels of intrinsic defects which often are not
achievable from pure DFT methods due to well-known band gap errors.

In order to examine computational setup, we also calculated the elastic properties and
frequencies of infra-red (IR) phonon modes of pristine β-Ga2O3. The elastic constants, bulk
modulus, Young modulus and Shear modulus for β-Ga2O3 are presented in Table 2 with
experimental data, while IR-active phonon modes at the Γ-point of β-Ga2O3 in Table 3.
From the group theory analysis we know, that the decomposition of the Reducible Rep-
resentation at the center of the First Brillouin Zone (k ≈ 0) for β-Ga2O3 structure is as
follows: Γ = 10Ag + 5Bg + 10Au + 5Au, where three modes are acoustic (Au + 2Bu), so
there are 12 active IR modes and 15 active Raman modes. Both calculations are in good
agreement with observed experimental results. The absolute error is higher for modes
in the lower part of the spectrum (up to 300 cm−1), which mainly correspond to the Ga
sublattice bending modes, while Ga–O stretching modes are very well reproduced.
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Figure 2. Density of states and band structure of monoclinic β-Ga2O3, as calculated by means of
B3LYP hybrid exchange–correlation functional within DFT in this study.

Table 2. Calculated elastic coefficients cij, bulk modulus BH, Yong modulus EH and shear modulus GH (all in GPa) for
β-Ga2O3 together with experimental values. The subscript H according to Voigt–Reuss–Hill notation.

C11 C12 C13 C15 C22 C23 C25 C33

This work
(B3LYP) 235.3 123.9 138 −12.8 357.2 75.8 6.9 356.5

PBESOL [39] 208 118 146 0 335 83 0 318
Exp [40] 238 130 152 −4 359 78 2 346
Exp [41] 243 128 160 −1.6 344 71 0.4 347

C35 C44 C46 C55 C66 BH EH GH

This work
(B3LYP) 12 54.7 15.2 80.9 101.4 179 213.5 82

PBESOL [39] 19 50 9 77 96 171 192 73
Exp [40] 19 49 6 91 107 184 213 82
Exp [41] 1 48 5.6 89 104 183 210 80

Table 3. Calculated infra-red active phonon modes (in cm−1) at the Γ-point of β-Ga2O3 crystal along
with known experimental data.

Mode This Work [42] [43]
Symmetry Calc Calc Exp Exp

Au(1) 173 155 154 -
Bu(1) 241 202 213 -
Bu(2) 280 260 262 272
Bu(3) 283 289 279 287
Au(2) 287 327 296 301
Bu(4) 362 365 356 357
Bu(5) 434 446 432 448
Au(3) 457 475 448 486
Bu(6) 573 589 572 573
Au(4) 664 678 663 671
Bu(7) 687 705 692 716
Bu(8) 737 753 743 774

The calculated reflection spectrum [44] was computed for direction of electric vector
E parallel to the b-axis (E||b), as shown in Figure 3. As can be seen, the spectrum is
comparable with the measured spectra with wavevector q⊥(100) and E||b by Villora
et al. [45] and even for another direction with q⊥(−201) and E||b by Azuhata [46]. This
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result also confirms the conclusions of Azuhata et al. [46] that pure TO phonons are
observed with Au symmetry in the spectrum.
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Villora et al. [45] and Azuhata et al. [46] (see text for the details).

3.2. Oxygen Vacancy

The corresponding formation energies for oxygen vacancies in three different crys-
tallographic positions are shown in Figure 4. Neutral VO has the lowest energy on the
O(3) site. In all cases, oxygen vacancy acts as a negative-U defect, where the 1+ charge
state is unstable. Obtained transition levels are ε (2+/0) = 4 eV for O(1), 3.8 eV for O(2),
and 3.1 eV for O(3) (Table 4). Under oxygen-rich conditions, formation energy increases
by ~2.76 eV. As seen, transition levels are located nearly 1 eV under the conduction band
minimum (CBM), which is the amount of thermal energy that is much greater than the
room temperature to promote an electron from the defect level to the CBM [47]. Therefore,
oxygen vacancies are deep donors, i.e., the defects with high ionization barrier and are
not the effective source of charge carriers. Meanwhile, as will be shown, further gallium
vacancies are deep acceptors with empty levels located high enough from the top of VBM
(>0.7 eV) but lower than the donors levels. Thus, oxygen vacancies can easily donate their
electrons to gallium vacancies and effectively compensate positively charged defects. As
acceptor doping increases, the Fermi level is pushed down toward the VB by decreas-
ing the formation energy of oxygen vacancies as donors. On the other hand, the same
process increases the formation energy of acceptors thanks to their charging beginning,
thus preventing further reduction in donor formation energy. Thus, it can be assumed
that the energy balance can be achieved between these two competing processes when
crystal system comes close to equilibrium conditions. Finally, this leads to unchanged
concentration of native donors and acceptors.

As clearly follows from Figure 5, the creation of an oxygen vacancy leads to the
appearance of a corresponding defect level in the band gap. Depending on the arrangement
of oxygen vacancies in the lattice, their levels occur at different heights from the top of
VBM (or depths from CBM bottom). The difference between DOS defect levels confirms the
disparity of the local electronic structure of each oxygen vacancy. Occupied defect states
(a neutral oxygen vacancy, two electrons in the defect site) are in the middle of the band
gap, thus showing the defect’s high ionization potential and proving this defect as a deep
donor. Therefore, the locations of the oxygen vacancy level qualitatively correlate with the
calculated charge transition levels, e.g., the levels of VO1 lie are higher from the top of VBM
than the levels of other vacancies, which indicates a more “shallow donor” nature of the
defects (Figure 5).
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Table 4. Transition levels, ε(q/q’) (in eV), of vacancy defects in β-Ga2O3.

Defect Transition This Work (B3LYP) Zacherle et al. (HSE06) [12] Varley et al. (HSE06) [13,17]

VO1 2+/0 4 3 3.31

VO2 2+/0 3.8 3.2 2.7

VO3 2+/0 3.1 2.4 3.57

VGa1

0/1− 1.49 2 1.65

1−/2− 1.9 2.3 2.9

2−/3− 2.9 2.8 3.3

VGa2

0/1− 0.74 1.3 2

1−/2− 1.43 1.8 2.5

2−/3− 2.7 2.45 3

3.3. Gallium Vacancy

Gallium vacancy (VGa) is a common defect in β-Ga2O3. As it is well known, Ga
possesses three valence electrons. Therefore, a missing Ga atom leaves behind three
dangling bonds that can accept electrons and, thus, VGa can act as a triple acceptor and
compensate donors, reducing free-electron concentration.

The formation energies of VGa are shown on Figure 3 at low and high oxygen chemical
potentials. Indeed, as it was written above, with an increase in the chemical potential
of oxygen, the formation energy of VGa decreases by ~4 eV. Corresponding calculations
clearly show that the Ga(1) vacancy has a lower formation energy than Ga(2). The ob-
tained optical transition levels (in eV) for Ga(1)/Ga(2) vacancies are: ε (0/1−) = 1.49/0.74,
ε (1−/2−) = 1.9/1.43, ε(2−/3−) = 2.9/2.7. The difference in the formation energies and
transition levels can be related to the anisotropy of the local electronic structure of each
defect. Indeed, obtained effective charges of neutral Ga(1) and Ga(2) vacancies shows dis-
crepancy: q(VGa1) = +0.83e vs q(VGa2) = +0.95e. The essential difference between transition
levels of Ga vacancies is obtained in another calculation with HSE06 hybrid functional by
Zacherle [12]. The transition levels lie rather high above the VBM.
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The calculated density of states for VGa
0 (Figure 6) also shows that defect states (three

holes on oxygen atoms around a vacancy) lie more than 1 eV above the top of valence band,
making this defect a deep acceptor; therefore, these vacancies can serve as compensators
for donor impurities only. Meanwhile, the formation energy of a neutral vacancy even at
O-rich conditions equals more than 10 eV thus, the concentration of such defects under
equilibrium conditions is negligible.

For comparison, we summarized transition levels of all vacancies in Table 4 with
available literature data. One can see that our results are slightly higher in energy for
oxygen vacancies than in the case of the hybrid HSE06 calculations of Zacherle et al. [12]
or Varley et al. While, for gallium vacancies, our obtained transition energies are slightly
lower. Nevertheless, obtained charge transition levels for all type vacancy defects are
comparable among hybrid calculations. Recently, a semi-empiric DFTB study of native
defects in β-Ga2O3 have been reported [48], where a very large supercell of 1120 atoms was
used. With a 2-nm dimension, a large supercell essentially lowered the finite-size errors,
elastic effects, and the band filling effect, which occur from interactions between charged
defects. The results of the DFTB study also agree with our results and confirm other early
theoretical investigations.
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Meanwhile, the persistent n-type conductivity is often attributed to hydrogen incor-
poration into crystal. It predicted theoretically that hydrogen can be easily accumulated
and stored in the crystal due to a small incorporation barrier of about 0.34 eV and strongly
contribute to n-type conductivity because the shallow donor [17]. Interestingly, the same
behavior of hydrogen has often been observed in other oxides, e.g., ZnO, SnO2, In2O3 [49].
Thus, it is likely that hydrogen impurity could be a “hidden” source, which drastically
transforms the non-conductive β-Ga2O3 to an n-type conductor. Note that hydrogen in
oxides can present itself in different forms and have different charge states [50–54], which,
in principle, complicates the overall picture for understanding.

4. Summary and Conclusions

In this study, we calculated the energetics and electronic structure of a fully optimized
80-atoms supercell of a monoclinic β-Ga2O3 crystal using the B3LYP hybrid exchange–
correlation functional within the DFT approach. The use of the hybrid B3LYP functional
makes it possible to accurately calculate the basic properties of pure β-Ga2O3. In addition,
the calculated elasticity tensors and IR-active vibration modes are in good agreement
with those measured experimentally and available from other calculations. The corre-
sponding redistribution of the electron charge in ideal β-Ga2O3 indicates a noticeable
covalence of the Ga–O bounds, which can be confirmed by further detailed X-ray or
neutron diffraction analysis.

Due to local anisotropy of each defect, the formation energy of vacancy depends on
own local electronic structure and contributes to the difference between transition levels.
The formation of the oxygen vacancy in β-Ga2O3 leads to the presence of deep donor
defects. That is why oxygen vacancies can be hardly responsible for n-type conductivity in
β-Ga2O3 irrespective of their quite low formation energy. In this respect, we suggest that
the n-type conductivity in gallium oxide is observed due to low donor impurity doping
(e.g., by hydrogen) under crystal growth conditions. It is important to note that all types
of gallium vacancies with different charge states are predicted to be deep acceptors with
corresponding transition levels located more than 0.7 eV above the valence band and with
a high formation energy of 10 eV. Our calculations also show that gallium vacancies cannot
be the defining reason of p-type conductivity in β-Ga2O3 crystals.
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