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The study focuses on the optical properties of the CZTS multicomponent semiconductor 
absorber with 3 % “production” impurities of Cd, Na, O within the framework of the density 
functional theory using the generalized gradient approximation and the SCAPS program, as 
well as investigates their influence on the performance and efficiency of CZTS-solar cells. 
The results showed that the introduction of Cd, Na, O impurities would lead to a decrease in 
the intensity of the absorption bands at 2.06 eV and 2.55 eV. The density of states CZTS: (Cd, 
Na, O) was determined from first principles, and it was revealed that impurities of Cd and O 
atoms would lead to a decrease in the band gap (to 0.9 eV and 0.79 eV), and an increase in Na 
impurity absorption (1.2 eV). It was also found that a decrease in the band gap led to a decrease 
in the open circuit voltage, and it was also shown that “industrial” impurities led to a decrease 
in the efficiency of energy conversion of solar cells to 2.34 %.

Keywords: Cu2ZnSnS4 (CZTS), density of states, JV-characteristics, optical absorption 
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1. INTRODUCTION

Currently, one of the most emerging 
problems is the lack of energy resources 
and environmental pollution. For a com-
prehensive solution of these environmen-
tal tasks, it is of interest to use renewable 
energy sources, as well as to increase their 
share of consumption. Promising areas 
of alternative energy are the use of solar 
energy, the movement of air masses, ebb 
and flow, sea currents and others. To con-
vert the listed types of energy into electri-
cal energy, energy converters are needed, as 
well as efficient operation of power supply, 
energy storage devices are required. The 
solution to these problems will make it pos-
sible to create highly efficient, economical 
and environmentally-friendly power supply 
systems.

Note that various options have already 
been proposed and successfully developed 
for energy converters, such as solar bat-
teries [1]–[3], wind generators [4], [5], 
geothermal converters [6], as well as for 
different energy storage devices, such as a 
superconducting inductive storage [7]. To 
improve the performance of these systems, 
new properties of solar radiation absorbers 
[8]–[10], quasi-two-dimensional materials 
[11]–[13], superconductors [14]–[16] and 
others are being searched.

Solar energy is the most economical 
and efficient among all the listed renew-
able energy sources. Therefore, in recent 
years, active work has been carried out to 
introduce alternative sources of power sup-
ply to various objects of special equipment 
with autonomous electricity based on pho-
tovoltaic modules using solar energy. To 
improve the output energy characteristics of 
such modules, the electronic properties of 
nanomaterials [17]–[20], due to quantum-
size effects, are being intensively studied. 

The application of the quantum properties 
of quasiparticles can lead to a significant 
improvement in the basic parameters of 
photoelectronic devices.

It is impossible to develop new types 
of solar cells without understanding the 
ongoing physical and chemical processes 
when converting solar energy into electri-
cal energy. Currently, work is underway 
to study thin-film solar cells based on Cu 
(In, Ga) (S, Se)2 (CIGS) [21]–[23]. This is 
due to the fact that they have high absorp-
tion coefficients and are relatively cheap 
[24]. However, despite the above advan-
tages, thin-film solar cells based on CIGS 
are inferior to their counterparts in terms of 
efficiency and radiation resistance, and the 
elements In and Ga included in CIGS are 
highly toxic substances. In order to avoid 
the expensive disposal of such toxic ele-
ments for the creation of thin-film solar 
cells, the photovoltaic properties of envi-
ronmentally-friendly materials are being 
intensively studied. By replacing highly 
toxic elements In, Ga, respectively, with 
non-toxic elements Zn, Sn, a multicompo-
nent semiconductor compound Cu2ZnSn 
(S, Se)4 (CZTS) was obtained [25]. The 
unit cell of the CZTS structure is shown in 
Fig. 1.

Fig. 1. Unit cell structure of CZTS.
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Fig. 2. Multicomponent solar cell  
model based on CZTS.

Thin-film solar cells based on 
Cu2ZnSn(S,Se)4 are a layered structure 
of the type ZnO/CdS/CZTS, i-ZnO/ZnS/
CZTS, etc., see, for example, Fig. 2. Such 
layered and multicomponent structures are 
very complex and during production the 
absorber of the CZTS solar cell is contami-

nated with various impurities, for example, 
cadmium from the adjacent layer of CdS, 
Na from glass, as well as oxygen, nitrogen 
and hydrogen atoms penetrating from the 
air; therefore, we will call such impurities 
“production”. Despite the low concentration 
of industrial impurities, they affect the opti-
cal characteristics of the absorber, which is 
important to take into account when devel-
oping high-performance solar cells.

In this paper, within the framework 
of the density functional theory using the 
generalized gradient approximation (DFT-
GGA), the optical properties of the CZTS 
absorber with 3% Cd, Na and O impuri-
ties are determined, and the effects of these 
impurities are estimated using the SCAPS 
program (a Solar Cell Capacitance Simula-
tor) on the electrical transport properties of 
a solar cell by the example of the structure 
i-ZnO/CdS/CZTS/glass.

2. SIMULATION MODEL AND METHODS

The procedure for optimizing the CZTS 
geometry and describing the interatomic 
interaction was carried out within the 
framework of the density functional theory 
(DFT); the generalized gradient approxima-
tion GGA-PBE was used as the exchange-
correlation functional [26]. When optimiz-
ing the structures, the atomic configuration 
parameters were relaxed until the forces on 

all atoms became less than a predetermined 
threshold value of 0.05 eV/Å.

Computer simulation of the optical 
characteristics of CZTS, CZTS: Cd, CZTS: 
Na, CZTS: O was carried out within the 
DFT-GGA using the Kubo-Greenwood 
equation, which determined their dielectric 
susceptibility:

( ) ( ) ( )2 4

2 2
0

m n ji
ij nm mn

nme nm

f E f Ee
m V E i

χ ω π π
ε ω ω

−
= −

− − Γ
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where i
nmπ  is i -component of the dipole matrix element between state n and m; V – the vol-

ume; Γ  – the broadening; e  – the charge of the electron;   – Planck’s constant; E  – energy; 
( )f E  – the Fermi distribution function of quasiparticle energy; 0ε – dielectric constant of 

vacuum; ω  – frequency; em  – electron mass.
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From Eq. (1), the dependence of the 
dielectric constant on frequency (on energy) 
is determined:

( ) ( )1ε ω χ ω= + .	  (2)

Using the imaginary and real parts 
of the dielectric constant (2), we find the 
extinction coefficient:

( )
2 2Re( ) Im( ) Re( )

2
k

ε ε ε
ω

+ −
= . (3)

From (3) optical absorption coefficient 
is determined:

2 k
c
ωα = .	  (4)

Simulation of optical properties of 
CZTS is done using program Atomistix 
ToolKit with Virtual NanoLab [27].

To determine the density of state of 
CZTS, we first calculate its local density of 
states (LDOS):

( ) ( ) ( ) ( ), ij i j
ij

D r r rε ρ ε φ φ= ∑ ,	  (5)

where ( ) ( ) ( )L Rρ ε ρ ε ρ ε= + , ( )rφ  – base 
orbitals. The density of states CZTS is 
obtained by integrating the LDOS over the 
entire space:	

( ) ( ) ( )ij ij
ij

D drD Sε ε ρ ε= = ∑∫ , (6)

where ( ) ( )ij i jS r r drφ φ= ∫  – the overlap 
matrix.

In this paper, the assessment of the 
influence of Cd, Na, O impurities on the 
output parameters of solar cells based on 
the CZTS absorber was carried out using 
the SCAPS program developed by the 
Department of Electronics and Information 
Systems (ELIS) of the University of Ghent 
[28]–[31]. Using the SCAPS program, the 
output energy parameters of multicompo-
nent solar cells CZTS / CdS / i-ZnO / glass, 
CZTS: Cd / CdS / i-ZnO / glass, CZTS: Na / 
CdS / i-ZnO / glass, CZTS: O / CdS / i-ZnO 
/ glass were simulated.

The calculation of the photovoltaic 
parameters of solar cells based on CZTS 
was carried out by numerically solving the 
basic equations of the semiconductor (Pois-
son’s equation, which relates the electro-
static potential to the total charge density):

0
def

r ADe p n N N
x x e

ρψε ε + −∂ ∂   = = − − − − +   ∂ ∂   
,	 (7)

where ψ  – electrostatic potential; rε  – semiconductor dielectric constant; DN +  – ionized 
donor concentration; AN −  – ionized acceptor concentration; p – free hole concentration; 
n  – free electron concentration; defρ  – defect charge density.

Drift and diffusion mechanisms of 
charge carrier transport in semiconductors 
are described, respectively, by the follow-
ing equations:	

n n n
dn dJ D n
dx dx

φµ= + ,	                                        (8.1)

p p p
dp dJ D p
dx dx

φµ= + , (8.2)

where nJ  and pJ  – current density of elec-
trons and holes; nD  and pD  – diffusion 
coefficients of electrons and holes; φ – elec-
tric field; nµ  and pµ – mobility of electrons 
and holes, respectively.
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The external quantum efficiency of a 
model solar cell is determined by the for-
mula:

( )
( )

phJ
EQE

eF
λ
λ

= ,	  (9)

where ( )phJ λ  – total photogenerated cur-
rent density; ( )F λ  – solar stream. Solar 

radiation AM 1.5 with a power density of 
100 mW/cm2 is used as a source of sunlight. 
Note that the SCAPS software calculates 
the photovoltaic parameters taking into 
account the Shockley-Reed-Hall recombi-
nation statistics.

The basic SCAPS equations are 
described in detail in [28]–[31].

3. RESULTS AND DISCUSSION

Figure 3 shows the results of calculating 
the optical characteristics of CZTS, CZTS: 
Cd, CZTS: Na, CZTS: O. As can be seen, 
a significant contribution to the extinction 
coefficient is made by the imaginary part of 
the dielectric constant (see Eq. (3)). CZTS 

absorbs radiation in a wide energy range of 
~ 1.6–3 eV, forming 2 absorption bands at 
energies of 2.06 eV and 2.55 eV. Note that 
one more absorption band outside the con-
sidered interval appears at 1.2 eV.

Fig. 3. Optical characteristics of the absorber CZTS: 
a) real parts of the dielectric constant Re(ε); 

b) complex parts of the dielectric constant Im(ε); 
c) k is the extinction coefficient; 

d) α – the optical absorption coefficient.
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The introduction of 3  % Cd impuri-
ties, which replace mainly Zn atoms in the 
CZTS crystal lattice, will lead to a decrease 
in the intensity of the absorption spectrum 
at 2.1 eV; however, at 0.6 eV, a new band 
appears, and the band at ~ 1.2 eV disap-
pears. An impurity of Na will also lead to a 
decrease in the intensities of the absorption 
band at 2.06 eV and 2.5 eV. The absorption 
band at 1.2 eV shifts to the high-energy side 
of 1.32 eV, and a new band appears at 0.41 
eV. An impurity of an oxygen atom substi-
tuting a sulfur atom in the crystal lattice will 
lead, as in the case of other impurities, to a 
decrease in the intensity of the main absorp-

tion bands and their insignificant energy 
displacement of 2.03 eV and 2.5 eV. More-
over, in the low-energy region (at 0.88 eV 
and 1.4 eV), new absorption bands appear.

Figure 4 shows the results of calcu-
lating the density of states (DOS) CZTS, 
CZTS: Cd, CZTS:Na, CZTS:O. As can 
be seen, 3 % impurity of Cd and O atoms 
will lead to a decrease in the band gap from 
1.1 eV to 0.9 eV and 0.79 eV, respectively, 
and the same concentration of Na impurity 
increases the band gap to 1.2 eV. Small 
changes in the CZTS bandgap affect other 
energy parameters of solar cells based on 
them.

Fig. 4. Density of states of CZTS crystals.

Table 1 shows the main energy output 
parameters of a CZTS-based solar cell: (Cd, 
Na, O): open-circuit voltage (Voc), short cir-
cuit current density (Jsc), fill factor (FF) and 
power conversion efficiency (PCE). As can 
be seen, with a decrease in the band gap in 
CZTS: Cd, CZTS: O, the open circuit volt-
age Voc noticeably decreases from ~ 0.3 V 

to 0.19 V and 0.16 V, respectively. Also, a 
decrease in the band gap leads to a slight 
increase in the short-circuit current den-
sity from 27.6 mA / cm2 to 30.41 mA/cm2. 
Despite the small dose of Cd, Na, O impuri-
ties, their presence leads to a decrease in the 
PCE of solar cells. PCE decreases from ~ 
5 % to 2.34 %.
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Table 1. The Main Output Energy Parameters

Voc, V Jsc, mA/cm2 FF, % PCE, %
CZTS 0.297 27.595 60.58 4.97
CZTS:Cd 0.187 30.282 46.07 2.61
CZTS:Na 0.277 25.674 56.37 3.3
CZTS:O 0.157 30.409 49.22 2.34

One of the main characteristics of solar 
cells is the JV characteristic (Fig. 5). The JV 
characteristic reflects the internal dynamics 
of a solar cell and shows the parameters that 
determine its output power. As can be seen, 
a solar cell based on an absorber contami-
nated with Cd, Na, O has relatively worse 
JV characteristics and is significantly infe-
rior in output power from a solar cell based 
on a pure absorber.

The quantum yield of a solar cell based 
on a pure and impurity absorber is shown in 
Fig. 6. The quantum yield of solar cells with 
CZTS: Cd and CZTS: O is noticeably infe-
rior to that of a pure absorber in the high-
energy region (~ 2.8–4 eV), and in the case 
of CZTS: Na, on the contrary, in the low-

energy region (~ 1.5–2.5  eV). We believe 
that this is due to a change in the band gap 
towards a decrease in CZTS: Cd (Eg ~ 0.9 
eV) and CZTS: O (Eg ~ 0.79 eV) and an 
increase in the case of CZTS: Na (Eg~1.2 
eV), as well as a change in their optical 
characteristics.

In the end, it should be noted that the 
important role in the functioning of various 
devices, including solar cells, depends on 
the state of their surface, defects on the sur-
face and in the near-surface layer, surface 
porosity, stability of adsorbed molecules, 
etc. [32]–[45]. Some of these issues are in 
progress and will be reported in subsequent 
articles.

Fig. 5. JV characteristics of a solar cell based on 
CZTS.

Fig. 6. CZTS based solar cell quantum yield.

4. CONCLUSIONS

Thus, in this paper, within the frame-
work of the DFT-GGA, the optical prop-
erties of the CZTS multicomponent semi-
conductor absorber with a 3 % impurity of 
Cd, Na, O were determined, as well as their 

effect on the performance of CZTS solar 
cells was considered. It was shown that the 
introduction of these impurities would lead 
to a decrease in the intensity of the absorp-
tion spectrum at 2.06 eV and 2.55 eV. It was 
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revealed that impurities of Cd and O atoms 
would lead to a decrease in Eg CZTS to 0.9 
eV and 0.79 eV, respectively, while impuri-
ties of Na atoms increased Eg to 1.2 eV. It 
was found that with a decrease in the band 
gap in CZTS: Cd, CZTS:O, the open circuit 
voltage Voc noticeably decreased from ~ 0.3 
V to 0.19 V and 0.16 V, and the indicated 
impurities led to a decrease in the PCE of 
solar cells from ~ 5  % to 2.34  %. It was 

shown that solar cells with impurity absorb-
ers had poorer JV characteristics, and their 
quantum yield was noticeably inferior to 
those of a pure absorber both in the high-
energy region (CZTS: Cd, CZTS: O) and 
in the low-energy region (CZTS: Na). The 
results obtained can be useful in the devel-
opment of environmentally-friendly solar 
cells based on CZTS for future technolo-
gies.
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