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Abstract: We performed, to the best of our knowledge, the world’s first first-principles calculations
for the WO2-terminated cubic WO3 (001) surface and analyzed the systematic trends in the WO3,
SrTiO3, BaTiO3, PbTiO3 and CaTiO3 (001) surface ab initio calculations. According to our first
principles calculations, all WO2 or TiO2-terminated WO3, SrTiO3, BaTiO3, PbTiO3 and CaZrO3 (001)
surface upper-layer atoms relax inwards towards the crystal bulk, while all second-layer atoms relax
upwards. The only two exceptions are outward relaxations of first layer WO2 and TiO2-terminated
WO3 and PbTiO3 (001) surface O atoms. The WO2 or TiO2-terminated WO3, SrTiO3, BaTiO3, PbTiO3

and CaTiO3 (001) surface-band gaps at the Γ–Γ point are smaller than their respective bulk-band gaps.
The Ti–O chemical bond populations in the SrTiO3, BaTiO3, PbTiO3 and CaTiO3 bulk are smaller
than those near the TiO2-terminated (001) surfaces. Conversely, the W–O chemical bond population
in the WO3 bulk is larger than near the WO2-terminated WO3 (001) surface.

Keywords: Ab initio calculations; ABO3 (001) surfaces; WO3; hybrid exchange–correlation functionals

1. Introduction

Throughout the last 20 years the SrTiO3, BaTiO3, PbTiO3 and CaTiO3 (001) surfaces
have been broadly explored theoretically and experimentally [1–10]. At the same time,
to the best of our knowledge, there are no reports of ab initio calculations dealing with
the atomic relaxation and electronic structure of the pristine WO2-terminated WO3 (001)
surface in the cubic perovskite-like structure. Nevertheless, a large amount of experimental
studies exist dealing with WO3 (001) surfaces [11–14]. Recent theoretical studies have been
devoted, for example, to hydrogen adsorption on the WO3 (001) surface [15], understanding
the water splitting process on the WO3 (001) surface [16], and H2O adsorption on the WO3
(001) surface [17].

BaTiO3, PbTiO3 and CaTiO3 perovskites have attracted huge fundamental interest
in these materials mostly for their phase transitions. Historically the ABO3 perovskites
were highly promising low-cost energy materials. They have been used for numerous
optoelectronic and photonic device applications [18]. SrTiO3 perovskite thin films are im-
portant for a large amount of technologically important applications [19,20]. For example,
they are used for catalysis, optical wave guides, high-capacity memory cells as well as
substrates for high-temperature cuprate superconductor growth [19,20]. Barium titanate
(BaTiO3) is an excellent photorefractive material [18]. Ferroelectric PbTiO3 thin films have
been applied to large numbers of electronic devices, such as non-volatile memory FET [19]
and Si monolithic ultrasonic sensors [18]. CaTiO3 is used worldwide in technologically
important electronic ceramic materials [18]. Tungsten trioxide (WO3) and its thin films
exhibit a large number of novel properties useful for high-technology applications [21].
In particular, WO3 undergoes phase transitions, which are explored for their potential in
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industrial applications, display systems and microelectronics [21]. It is worth noting that
the predictive power of ab initio calculations makes possible the design of new materi-
als for high-technology applications on paper. Nowadays, consumer electronics mostly
use lithium-ion batteries containing LiCoO2 cathode, which was discovered in 1980 by J.
Goodenough, one of the 2019 Nobel Prize winners for Chemistry [22]. The experimentally
detected LiCoO2 average intercalation voltage is 4.0–4.1 V [23]. Based on ab initio calcula-
tions by Eglitis and Borstel [24–26], it was demonstrated that a novel Li2CoMn3O8 battery
cathode material can lead to a high-energy lithium-ion battery working at the 5 V regime.

The SrTiO3, BaTiO3, PbTiO3 and CaTiO3 perovskite cubic unit cells contain five atoms.
The A type atom (A = Sr, Ba, Pb or Ca) has the coordinates (0, 0, 0), and it is located in
the cube corner position. The Ti atom has the coordinates ( 1

2 , 1
2 , 1

2 ), and it is located in the
cube body center position. The 3 O atoms have the coordinates ( 1

2 , 1
2 , 0), ( 1

2 , 0, 1
2 ), (0, 1

2 , 1
2 ),

and they are located in the cube face centered positions. All SrTiO3, BaTiO3, PbTiO3 and
CaTiO3 cubic perovskites have the same space group Pm3m with the space group number
equal to 221. WO3 in its cubic perovskite-like structure has exactly the same space group
as ATiO3 perovskites Pm3m, and also the same space group number 221. The only striking
difference between the SrTiO3, BaTiO3, PbTiO3 and CaTiO3 cubic perovskites as well as
WO3 in its cubic perovskite-like structure is that WO3 has an empty A cation position.
Thereby, the cubic perovskite-like unit cell of WO3 contain only four atoms.

The objective of the reported here work was to carry out first-principles calculations
for WO2-terminated polar WO3 (001) surfaces in the cubic perovskite-like structure. We
compared our WO2-terminated WO3 (001) surface-atomic and electronic-structure ab initio
calculations with our results for the related structure TiO2-terminated SrTiO3, BaTiO3,
PbTiO3 and CaTiO3 cubic perovskite (001) surfaces. We carefully compared our calculation
results for all five of our calculated materials and detected systematic common trends.
The results for WO2-terminated WO3 and TiO2-terminated SrTiO3, BaTiO3, PbTiO3 and
CaTiO3 (001) surfaces were summarized and analysed in a way easily readable for a broad
audience of scientists.

2. Computational Methods and Surface Models

In order to carry out ab initio DFT-B3LYP or DFT-B3PW calculations, we employed the
CRYSTAL computer program package [27]. Unlike the plane-wave codes widely employed
in many previous studies [28,29], the CRYSTAL code [27] uses localized Gaussian-type
basis sets. In our calculations, we adopted the basis sets (BS) developed for SrTiO3, BaTiO3
and PbTiO3 in [30]. The Hay–Wadt small-core, effective-core pseudopotentials (ECP) were
adopted for Ca and Ti atoms [31–33]. The small-core ECPs replaced only the inner-core
orbitals, while orbitals for subvalence electrons as well as for valence electrons were
calculated self-consistently. Oxygen atoms were treated with the all-electron BS. Finally, for
the W atom we used BS developed by Cora et al. [34]. Our calculations were performed by
means of the B3LYP [35] or B3PW [36–38] hybrid exchange–correlation functionals. For
all WO3, SrTiO3, BaTiO3, PbTiO3 and CaTiO3 materials we performed the reciprocal space
integration with an 8 × 8 × 8 and 8 × 8 × 1 extension of Pack–Monkhorst mesh for the
bulk and (001) surfaces of these materials. The CRYSTAL computer program package [27]
makes possible the calculation of isolated 2D slabs perpendicular to the Oz direction. In
order to compare the performance of different exchange–correlation functionals and choose
the best method for our calculations, we calculated the SrTiO3, SrZrO3, BaZrO3, MgF2 and
CaF2 bulk Γ–Γ band gaps [30,39–42] (Table 1 and Figure 1). The experimentally detected
SrTiO3, SrZrO3, BaZrO3, MgF2 and CaF2 bulk band gaps at the Γ-point are mentioned in
Table 1 for comparison purposes as well as depicted in Figure 1 [43–47].
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Table 1. By means of different exchange–correlation functionals calculated SrTiO3, SrZrO3, BaZrO3,
MgF2 and CaF2 bulk Γ–Γ band gaps (eV). Experimental bulk band gaps at the Γ-point are listed
for comparison.

Method SrTiO3 [30] SrZrO3 [39] BaZrO3 [40] MgF2 [41] CaF2 [42]

Experiment 3.75 [43] 5.6 [44] 5.3 [45] 13.0 [46] 12.1 [47]

B3PW 3.96 5.30 4.93 9.48 10.96

B3LYP 3.89 5.31 4.79 9.42 10.85

HF 12.33 13.54 12.96 19.65 20.77

PWGGA 2.31 3.53 3.24 6.94 8.51

PBE 2.35 3.52 - 6.91 8.45

Crystals 2021, 11, x FOR PEER REVIEW 3 of 13 
 

 

Table 1. By means of different exchange–correlation functionals calculated SrTiO3, SrZrO3, Ba-

ZrO3, MgF2 and CaF2 bulk Γ–Γ band gaps (eV). Experimental bulk band gaps at the Γ-point are 

listed for comparison. 

Method SrTiO3 [30] SrZrO3 [39] BaZrO3 [40] MgF2 [41] CaF2 [42] 

Experiment 3.75 [43] 5.6 [44]  5.3 [45]  13.0 [46] 12.1 [47] 

B3PW 3.96 5.30 4.93 9.48 10.96 

B3LYP 3.89 5.31 4.79 9.42 10.85 

HF 12.33 13.54 12.96 19.65 20.77 

PWGGA 2.31 3.53 3.24 6.94 8.51 

PBE 2.35 3.52 - 6.91 8.45 

2

4

6

8

10

12

14

16

18

20

22

B
u

lk
 g

a
p

 w
it
h

 d
if
fe

re
n

t 
fu

n
c
ti
o

n
a

ls
 (

e
V

)

SrTiO3, SrZrO3, BaZrO3, MgF2, CaF2

 Experiment

 B3PW

 B3LYP

 HF

 PWGGA 

1

2
3

4

5

 

Figure 1. Ab initio calculated and experimentally measured bulk Γ–Γ band gaps for SrTiO3, 

SrZrO3, BaZrO3, MgF2 and CaF2 obtained by means of different exchange–correlation functionals: 

(1) PWGGA; (2) B3LYP; (3) B3PW; (4) Experiment; (5) HF. 
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Figure 1. Ab initio calculated and experimentally measured bulk Γ–Γ band gaps for SrTiO3,
SrZrO3, BaZrO3, MgF2 and CaF2 obtained by means of different exchange–correlation function-
als: (1) PWGGA; (2) B3LYP; (3) B3PW; (4) Experiment; (5) HF.

As can be seen in Table 1, the ab initio Hartree-Fock (HF) calculations, for all five
our calculated materials, very strongly overestimate the experimental band gap at Γ-point.
Namely, the HF method most strongly (3.29 times) overestimate the experimental SrTiO3
bulk Γ–Γ band gap. Even HF calculated MgF2 bulk Γ–Γ band gap overestimates the
experimental value 1.51 times (Table 1 and Figure 1).

From another side, as we can see from Table 1 and Figure 1, the generalized gra-
dient approximations (GGA) to the density functional theory (DFT) systematically and
considerably underestimate the experimental Γ–Γ bulk band gap in our calculated ABO3
perovskites as well as MgF2 and CaF2. For example, the PWGGA (6.94 eV) and PBE
(6.91 eV) calculated MgF2 bulk band gap at Γ-point is 1.87 and 1.88 times, respectively,
smaller than the experimental MgF2 bulk Γ–Γ band gap value of 13.0 eV [37].

To obtain the best possible results, we performed our WO3, SrTiO3, BaTiO3, PbTiO3
and CaTiO3 bulk and (001) surface calculations by means of the B3PW [36–38] or B3LYP [35]
hybrid exchange–correlation functionals. The hybrid functional incorporates a portion
of exact exchange energy density from HF theory (20%) while the rest of the exchange–
correlation part is a mixture of different approaches (both exchange and correlation). It is
obvious, that the B3PW and B3LYP hybrid exchange–correlation functionals, since they
are a superposition of HF and DFT methods as implemented in the CRYSTAL computer
code [27], allowed us to achieve as good an agreement as possible between the first
principles calculated and the experimentally detected Γ–Γ band gaps for WO3, SrTiO3,
BaTiO3, PbTiO3 and CaTiO3 bulk and their (001) surfaces.
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In our ab initio calculations we used WO2-terminated WO3 as well as TiO2-terminated
SrTiO3, BaTiO3, PbTiO3 and CaTiO3 (001) slabs containing 9 alternating layers. First our
calculated WO3 (001) slab was terminated by WO2 planes from both sides (WO2–O–WO2–O–
WO2–O–WO2–O–WO2) from a 19-atom supercell (Figure 2). Another of our calculated
SrTiO3, BaTiO3, PbTiO3 and CaTiO3 (001) slabs was terminated by TiO2 planes from both
sides (TiO2–AO–TiO2–AO–TiO2–AO–TiO2–AOvTiO2) and consisted of a 23-atom supercell
(Figure 3). Both our calculated slabs were non-stoichiometric and had unit-cell equations
W5O14 as well as A4Ti5O14, respectively. To analyse the chemical bonds, effective atomic
charges and covalency effects for WO3 and ATiO3 perovskite bulk and (001) surfaces, we
used the well-known Mulliken population analysis [48–52].
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3. Ab initio Calculation Results for WO3, SrTiO3, BaTiO3, PbTiO3 and CaTiO3 Bulk

As a starting point, by means of the hybrid B3LYP exchange–correlation functional, we
calculated the cubic WO3 bulk lattice constant (3.775 Å). Our calculated cubic WO3 constant
(3.775 Å) was only slightly larger than the experimental value of a0 = 3.71–3.75 Å [51]
(Table 2); nevertheless, it was in almost perfect agreement with the earlier calculation result
for the WO3 cubic structure bulk lattice constant calculated by the full-potential linear
muffin-tin (FP-LMTO) code equal to 3.78 Å [52]. Our B3PW-calculated SrTiO3 bulk lattice
constant (3.904 Å) was only slightly overestimated with respect to the experimental SrTiO3
bulk lattice constant (3.89 Å) extrapolated to 0 K [53] (Table 2). Our ab initio calculation
of the BaTiO3 bulk lattice constant (4.008 Å) was in an outstanding agreement with the
experimental value of 4.00 Å [53–55]. Our B3PW-calculated PbTiO3 bulk lattice constant
(3.936 Å) [54–56] was only 0.86% under the experimental value of 3.97 Å [57]. Finally, our
calculated CaTiO3 bulk lattice constant (3.851 Å) was 1.17% smaller than the experimentally
detected (3.8967 Å) [58–60] (Table 2).

Table 2. Our ab initio-calculated and experimentally measured WO3, SrTiO3, BaTiO3, PbTiO3 and
CaTiO3 bulk lattice constants [51–60].

Material Method Theory Experiment

WO3
B3LYP 3.775

3.71–3.75 [51]
FP-LMTO 3.78 [52]

SrTiO3 B3PW 3.904 3.89 [53]

BaTiO3 B3PW 4.008 4.00 [53,54]

PbTiO3 B3PW 3.936 3.97 [54,57]

CaTiO3 B3PW 3.851 3.8967 [58–60]

Our ab initio B3LYP-calculated effective atomic charges for the WO3 bulk were
(+3.095e) for the W atom, and (−1.032e) for each of the three O atoms (Table 3). Our
B3LYP-calculated effective W atomic charge (+3.095e) was almost two times smaller than
the generally accepted classical ionic charge for the W(+6e) atom. In addition, our calcu-
lated effective atomic charge for the O (−1.032e) atom was almost two times smaller than
the generally accepted O atom classical ionic charge (−2e). In addition, for the SrTiO3,
BaTiO3, PbTiO3 and CaTiO3 perovskites, our calculated A atomic charges (+1.871e, +1.797e,
+1.354e and +1.782e, respectively) were considerably smaller than those of the classical
Sr, Ba, Pb, Ca atom ionic charges (+2e) (Table 3) [61–66]. Our B3PW-calculated O atom
Mulliken charges in SrTiO3, BaTiO3, PbTiO3 and CaTiO3 perovskites (−1.407e, −1.388e,
−1.232e and −1.371e, respectively) are also at least 29.65% smaller than the classical ionic
O atomic charge (−2e) [67–69]. Finally, our ab initio-calculated SrTiO3, BaTiO3, PbTiO3 and
CaTiO3 Ti atomic charges (+2.351e, +2.367e, +2.341e and 2.330e) are more than one-and-a-
half times smaller than the formal Ti atom ionic charge (+4e). Our calculated chemical bond
population between W and O atoms in WO3 bulk (0.142e) is approximately one-and-a-half
times larger than the Ti–O atom chemical bond population in SrTiO3, BaTiO3, PbTiO3 and
CaTiO3 perovskites (+0.088e, +0.098e, +0.098e and +0.084e, respectively).

Our B3LYP-calculated WO3 bulk Γ–Γ band gap (4.95 eV) overestimated by 1.21 eV
the experimental direct WO3 bulk band gap value at Γ-point of 3.74 eV [70] (Table 4).
Moreover, our B3PW-calculated bulk Γ–Γ band gaps for SrTiO3, BaTiO3, PbTiO3 and
CaTiO3 perovskites (3.96 eV, 3.55 eV, 4.32 eV and 4.18 eV, respectively) were always slightly
overestimated with respect to the experimentally measured direct band gap values at
Γ-point for SrTiO3, BaTiO3, PbTiO3 and CaTiO3 perovskites (3.75 eV [43], 3.2 eV [71],
3.4 eV [72] and 3.5 eV [73], respectively) (Table 4).
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Table 3. Our calculated atomic charges Q(e) as well as bond populations P(e) in WO3, SrTiO3, BaTiO3,
PbTiO3 and CaTiO3 bulk materials.

Bulk Materials WO3 SrTiO3 BaTiO3 PbTiO3 CaTiO3

Ion Property B3LYP B3PW B3PW B3PW B3PW

A
Q - +1.871 +1.797 +1.354 +1.782

P - −0.010 −0.034 +0.016 +0.006

O
Q −1.032 −1.407 −1.388 −1.232 −1.371

P +0.142 +0.088 +0.098 +0.098 +0.084

B Q +3.095 +2.351 +2.367 +2.341 +2.330

Table 4. Ab initio-calculated WO3, SrTiO3, BaTiO3, PbTiO3 and CaTiO3 bulk band gaps for the
cubic phase at the Γ–Γ point. Our B3LYP and B3PW calculations were compared with the relevant
experimental data.

Crystal Method
Optical Bulk Band Gap at Γ–Γ Point

Ab Initio Calculations Experimental Results

WO3 B3LYP 4.95 3.74 [70]

SrTiO3 B3PW 3.96 3.75 [43]

BaTiO3 B3PW 3.55 3.2 [71]

PbTiO3 B3PW 4.32 3.4 [72]

CaTiO3 B3PW 4.18 3.5 [73]

4. Ab Initio Calculation Results for the WO2-Terminated WO3 as Well as
TiO2-Terminated SrTiO3, BaTiO3, PbTiO3 and CaTiO3 (001) Surfaces

Our B3LYP- or B3PW-calculated atomic displacements for the WO2-terminated WO3
and the TiO2-terminated SrTiO3, BaTiO3, PbTiO3 and CaTiO3 (001) surface upper-three or
two layers are presented in Table 5. According to our B3LYP or B3PW calculations, all atoms
of the first (upper) surface layer relaxed inwards, while all second-layer atoms relaxed
outwards (Table 5). The only two exceptions to this systematic trend were the outward
relaxation of the first layer O atom of the WO2-terminated WO3 (001) surface (+0.42% of
a0) and the outward relaxation of the TiO2-terminated PbTiO3 (001) surface first-layer O
atom by (0.31% of a0) (Table 5). The first layer metal atom relaxation magnitudes range
from −1.71% of a0 for the TiO2-terminated CaTiO3 (001) surface to −3.08% of a0 for the
TiO2-terminated BaTiO3 (001) surface (Table 5). The first- and second-layer metal atom
displacement magnitudes for WO2-terminated WO3 and TiO2-terminated SrTiO3, BaTiO3,
PbTiO3 and CaTiO3 (001) surfaces were always considerably larger than the respective first-
and second-layer O atom displacement magnitudes (Table 5).

Our B3LYP-calculated surface rumpling amplitude s (the relative displacement of an
oxygen atom relative to the metal atom in the upper surface layer) for WO2-terminated WO3
(001) surface (+2.49) is in qualitative agreement with our B3PW-calculated surface rumpling
amplitudes s for TiO2-terminated BaTiO3, PbTiO3, CaTiO3 and SrTiO3 (001) surfaces (+2.73,
+3.12, +1.61 and +2.12, respectively) (Table 6). Our B3PW-calculated surface rumpling am-
plitude s for TiO2-terminated SrTiO3 (001) surface (+2.12) is in fair agreement with available
RHEED (+2.6 [74]) and LEED (+2.1 ± 2 [75]) experimental data (Table 6). Unfortunately,
our B3PW-calculated interlayer distance ∆d12 for the TiO2-terminated SrTiO3 (001) surface
(−5.80) had the opposite sign to the experimentally measured RHEED (+1.8 [74]) and LEED
(+1 ± 1 [67]) interlayer distances (Table 6). Finally, our B3PW-calculated interlayer distance
∆d23 for the TiO2-terminated SrTiO3 (001) surface (+3.55) is in qualitative agreement with
the RHEED experiment result (+1.3), but had the opposite sign to that of the LEED exper-
imental result (−1 ± 1). Nevertheless, it is worth noting that the RHEED (+1.3) and the
LEED experiments (−1 ± 1) had opposite signs for the interlayer distance ∆d23 (Table 6).



Crystals 2021, 11, 455 7 of 13

Table 5. WO2-terminated WO3 as well as TiO2-terminated SrTiO3, BaTiO3, PbTiO3 and CaTiO3 (001)
surface atom relaxation for upper-three surface layers (in percent of the bulk lattice constant).

Surfaces, (001) WO3 SrTiO3 BaTiO3 PbTiO3 CaTiO3

Layer Ion WO2-Term. TiO2-Term. TiO2-Term. TiO2-Term. TiO2-Term.

Method B3LYP B3PW B3PW B3PW B3PW

1
B −2.07 −2.25 −3.08 −2.81 −1.71

O +0.42 −0.13 −0.35 +0.31 −0.10

2
A Absent +3.55 +2.51 +5.32 +2.75

O +0.11 +0.57 +0.38 +1.28 +1.05

3
B −0.01 - - - -

O 0.00 - - - -

Table 6. Our B3LYP- or B3PW-calculated surface rumplings s and relative displacements ∆dij between
the three near-surface planes for the WO2-terminated WO3 and the TiO2-terminated BaTiO3, PbTiO3,
CaTiO3 and SrTiO3 (001) surfaces as a percent of the bulk material lattice constant. The available
experimental data are listed for comparison purposes.

Material Method
WO2- or TiO2-Terminated (001) Surface

s ∆d12 ∆d23

WO3 B3LYP +2.49 - -

BaTiO3 B3PW +2.73 −5.59 +2.51

PbTiO3 B3PW +3.12 −8.13 +5.32

CaTiO3 B3PW +1.61 −4.46 +2.75

SrTiO3

B3PW +2.12 −5.80 +3.55

RHEED exp. [74] +2.6 +1.8 +1.3

LEED exp. [75] +2.1 ± 2 +1 ± 1 −1 ± 1

We started the discussion of the electronic structure of WO2-terminated WO3 and
TiO2-terminated SrTiO3, BaTiO3, PbTiO3 and CaTiO3 (001) surfaces with an analysis of
charge redistribution in the top-three surface planes (Table 7). The ab initio-calculated
atomic displacements, bond populations between the nearest metal and oxygen atoms and
the effective atomic charges are collected in Table 7. For example, the effective static atomic
charges on WO2-terminated WO3 as well as TiO2-terminated SrTiO3, BaTiO3, PbTiO3 and
CaTiO3 (001) surface upper-layer W and Ti atoms are always reduced in comparison to the
bulk WO3, SrTiO3, BaTiO3, PbTiO3 and CaTiO3 crystal charges (−0.312e, −0.06e, −0.06e,
−0.062e and −0.052e, respectively). We recently observed a similar effect: the reduction of
surface upper-layer metal atomic charges near the ReO2-terminated ReO3 and the ZrO2-
terminated SrZrO3, BaZrO3, PbZrO3 and CaZrO3 (001) surfaces [76]. According to our
ab initio calculations, the largest upper-layer metal atom displacement was observed for
the TiO2-terminated BaTiO3 (001) surface Ba atom (−0.123 Å). Nevertheless, the TiO2-
terminated PbTiO3 (001) surface second-layer Pb atom outward displacement (+0.209 Å)
was even larger.

Our B3PW-calculated SrTiO3, BaTiO3, PbTiO3 and CaTiO3 bulk Ti-O chemical bond
covalency (+0.088e, +0.098e, +0.098e and +0.084e, respectively) were always smaller than
near the TiO2-terminated SrTiO3, BaTiO3, PbTiO3 and CaTiO3 (001) surfaces (0.118e, 0.126e,
0.114e, 0.114e, respectively) (Table 8 and Figure 4). Just opposite situation was obtained for
the WO3 crystal: the B3LYP-calculated W-O chemical bond population in the WO3 bulk
(0.142e) was larger than near the WO2-terminated WO3 (001) surface (0.108e) (Table 8 and
Figure 4). Nevertheless, it is worth noting that the W–O chemical bond population between
the W atom on the top layer of WO2-terminated WO3 (001) surface and the O atom on the
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second layer (0.278e) is the largest one (Table 8), which was in agreement with our previous
B3LYP calculations dealing with ReO2-terminated ReO3 (001) surfaces [76].

Table 7. Our B3LYP- or B3PW-calculated atomic shift magnitudes D (in Å) as well as the effective
atomic charges Q (in e) and nearest atomic chemical bond populations P (in e) for the WO2- and
TiO2-terminated WO3, SrTiO3, BaTiO3, PbTiO3 and CaTiO3 (001) surfaces.

WO2 and TiO2-Term. (001)
Surfaces WO3 SrTiO3 BaTiO3 PbTiO3 CaTiO3

Layer Property Ion WO2-Ter. TiO2-Ter. TiO2-Ter. TiO2-Ter. TiO2-Ter.

1

D B −0.078 −0.088 −0.123 −0.111 −0.066

Q +2.783 +2.291 +2.307 +2.279 +2.278

P +0.108 +0.118 +0.126 +0.114 +0.114

D O +0.016 −0.005 −0.014 +0.012 −0.004

Q −1.146 −1.296 −1.280 −1.184 −1.267

P −0.014 −0.014 −0.038 +0.044 +0.016

2

D A - +0.139 +0.101 +0.209 +0.106

Q - +1.850 +1.767 +1.275 +1.754

P - −0.008 −0.030 +0.008 +0.006

D O +0.004 +0.022 +0.015 +0.050 +0.041

Q −0.925 −1.365 −1.343 −1.167 −1.324

P +0.064 +0.080 +0.090 +0.080 +0.086

3

D B −0.0004 - - - -

Q +3.001 +2.348 +2.365 +2.335 +2.326

P +0.144 +0.096 +0.104 +0.108 +0.090

D O 0.000 - - - -

Q −1.037 −1.384 −1.371 −1.207 −1.354

P −0.032 −0.010 −0.034 +0.018 +0.008

Table 8. Our B3LYP or B3PW calculated W–O or Ti–O chemical bond populations for WO3, SrTiO3,
BaTiO3, PbTiO3 and CaTiO3 bulk and for WO2- or TiO2-terminated (001) surfaces (in e).

Material Method
W-O or Ti-O Chemical Bond Populations

Bulk WO2, TiO2-Term. (001)

WO3 B3LYP
+0.142 +0.108 (W(I)—O(I))

+0.142 +0.278 (W(I)—O(II))

SrTiO3 B3PW +0.088 +0.118

BaTiO3 B3PW +0.098 +0.126

PbTiO3 B3PW +0.098 +0.114

CaTiO3 B3PW +0.084 +0.114
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Figure 4. Our ab initio-calculated bulk (1) as well as BO2-terminated (001) surface (2). B–O chemical
bond populations (in e) for WO3, SrTiO3, BaTiO3, PbTiO3 and CaTiO3.

As can be seen in Table 9 and Figure 5, our B3LYP- or B3PW-calculated WO3, SrTiO3,
BaTiO3, PbTiO3 and CaTiO3 bulk band gaps at the Γ–Γ point were always reduced near the
WO2- or TiO2-terminated WO3, SrTiO3, BaTiO3, PbTiO3 and CaTiO3 (001) surfaces. The
B3PW-calculated SrTiO3 bulk band gap at Γ–Γ point near the TiO2-terminated SrTiO3 (001)
surface at Γ–Γ point was reduced only by 0.01 eV. At the same time, our B3LYP-calculated
WO3 bulk band gap (4.95 eV) at the Γ–Γ point near the WO2-terminated WO3 (001) surface
was reduced by 3.79 eV to 1.16 eV (Table 9 and Figure 5).

Table 9. B3LYP- or B3PW-calculated Γ–Γ band gaps for WO3, SrTiO3, BaTiO3, PbTiO3 and CaTiO3

bulk as well as their WO2 or TiO2-terminated (001) surfaces.

Material Method
Calculated Band Gap at Γ–Γ Point

Bulk WO2, TiO2-Term. (001)

WO3 B3LYP 4.95 1.16

SrTiO3 B3PW 3.96 3.95

BaTiO3 B3PW 3.55 2.96

PbTiO3 B3PW 4.32 3.18

CaTiO3 B3PW 4.18 3.30
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Figure 5. Our ab initio-calculated WO2-terminated WO3 and TiO2-terminated SrTiO3, BaTiO3,
PbTiO3 and CaTiO3 (001) surface Γ–Γ band gaps (line 1). Experimentally measured bulk Γ–Γ band
gaps (line 2). Our ab initio-calculated WO3, SrTiO3, BaTiO3, PbTiO3 and CaTiO3 bulk Γ–Γ band gaps
(line 3).
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5. Conclusions

For the first principles-calculated WO2- or TiO2-terminated WO3, SrTiO3, BaTiO3,
PbTiO3 and CaTiO3 (001) surfaces, as a rule, all first-layer surface atoms relax inwards,
whereas all second-layer surface atoms relax upwards. The only two exceptions from this
systematic trend are the upward relaxation of WO2- or TiO2-terminated WO3 and PbTiO3
(001) surface first-layer O atoms. As a result of our ab initio-calculated atomic relaxation,
TiO2-terminated SrTiO3, BaTiO3, PbTiO3 and CaTiO3 (001) surfaces exhibited a reduction
of the interlayer distance ∆d12 (−5.80, −5.59, −8.13, −4.46% of a0, respectively) as well as
an expansion of ∆d23 (+3.55, +2.51, +5.32, +2.75% of a0, respectively). It is worth noting
that after geometry optimization, it is very useful to perform ab initio molecular dynamics
computations to ensure the stability of the structures over time [77].

The changes in the interlayer distances between the first and second layer (∆d12)
were always larger than between the second and third layer (∆d23) for all our calculated
perovskites SrTiO3, BaTiO3, PbTiO3 and CaTiO3.

The Ti–O chemical bond population in SrTiO3, BaTiO3, PbTiO3 and CaTiO3 bulk was
always smaller than near their TiO2-terminated (001) surface (see Figure 4). In contrast,
the W–O chemical bond population in the WO3 bulk (0.142e) was larger than near the
WO2-terminated WO3 (001) surface (0.108e). Nevertheless, the largest W–O chemical
bond population, according to our ab initio calculations, is between the W atom located
on the WO2-terminated WO3 (001) surface and the second-layer O atom (0.278e). It was
worth noting, that also for the related material ReO3, according to our calculations [76],
the situation was similar. Namely, the Re–O chemical bond population in the ReO3 bulk
(0.212e) was larger than near the ReO2-terminated ReO3 (001) surface (0.170e). Nevertheless,
the Re–O chemical bond population between the Re atom located on the ReO2-terminated
ReO3 (001) surface upper-layer and O atom located on the ReO2-terminated ReO3 (001)
surface second layer was the largest (0.262e).

According to our B3LYP or B3PW calculations, the WO3, SrTiO3, BaTiO3, PbTiO3 and
CaTiO3 bulk Γ–Γ band gap values (4.95, 3.96, 3.55, 4.32, 4.18 eV, respectively) were always
reduced with respect to the bulk near the WO2- or TiO2-terminated WO3, SrTiO3, BaTiO3,
PbTiO3 and CaTiO3 (001) surfaces (1.16, 3.95, 2.96, 3.18, 3.30 eV, respectively) (see Figure 5).
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