& crystals

Article

Extraction-Pyrolytic Method for TiO, Polymorphs Production

Vera Serga 12

Anatoli L. Popov 2*

check for

updates
Citation: Serga, V.; Burve, R.;
Krumina, A.; Romanova, M.;
Kotomin, E.A.; Popov, A.L
Extraction—Pyrolytic Method for TiO,
Polymorphs Production. Crystals
2021, 11, 431. https://doi.org/
10.3390/ cryst11040431

Academic Editors: Anton Meden,
Philip Lightfoot and Pier Carlo Ricci

Received: 17 February 2021
Accepted: 14 April 2021
Published: 16 April 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Regina Burve

1,2 2

, Aija Krumina 1 Marina Romanova 3, Eugene A. Kotomin and

Institute of Inorganic Chemistry, Faculty of Materials Science and Applied Chemistry,

Riga Technical University, Paula Valdena 3/7, LV-1048 Riga, Latvia; vera.serga@rtu.lv (V.S.);
regina.burve@rtu.lv (R.B.); ajja.krumina_4@rtu.lv (A.K.)

2 [Institute of Solid-State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga, Latvia; kotomin@latnet.lv
Institute of Biomedical Engineering and Nanotechnologies, Riga Technical University, Viskalu 36A,
LV-1006 Riga, Latvia; marina.romanova@rtu.lv

*  Correspondence: popov@latnet.lv

Abstract: The unique properties and numerous applications of nanocrystalline titanium dioxide
(TiO,) are stimulating research on improving the existing and developing new titanium dioxide
synthesis methods. In this work, we demonstrate for the first time the possibilities of the extraction—
pyrolytic method (EPM) for the production of nanocrystalline TiO, powders. A titanium-containing
precursor (extract) was prepared by liquid-liquid extraction using valeric acid C4HyCOOH with-
out diluent as an extractant. Simultaneous thermogravimetric analysis and differential scanning
calorimetry (TGA-DSC), as well as the Fourier-transform infrared (FTIR) spectroscopy were used
to determine the temperature conditions to fabricate TiO, powders free of organic impurities. The
produced materials were also characterized by X-ray diffraction (XRD) analysis and transmission
electron microscopy (TEM). The results showed the possibility of the fabrication of storage-stable
liquid titanium (IV)-containing precursor, which provided nanocrystalline TiO, powders. It was
established that the EPM permits the production of both monophase (anatase polymorph or rutile
polymorph) and biphase (mixed anatase—rutile polymorphs), impurity-free nanocrystalline TiO,
powders. For comparison, TiO, powders were also produced by the precipitation method. The results
presented in this study could serve as a solid basis for further developing the EPM for the cheap
and simple production of nanocrystalline TiO,-based materials in the form of doped nanocrystalline
powders, thin films, and composite materials.
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1. Introduction

Among many functional nanomaterials, nanocrystalline titanium dioxide (TiO;) pow-
ders are of great interest due to their unique properties and numerous practical applica-
tions [1-11].

The current interest in titanium dioxide-based nanostructured materials is primar-
ily associated with their high-tech applications: solar cells (dye-sensitized, quantum
dots-sensitized and perovskite), lithium-ion batteries, supercapacitors, gas sensors and,
etc. [1-5,12]. Moreover, active investigations are related to the photocatalytic activity of
TiO,-based materials, including nanopowders and thin films. Due to chemical stability,
non-toxicity, low cost, and high availability, titanium dioxide is considered the most promis-
ing photocatalyst for the degradation of organic pollutants in water and air, as well as for
water splitting and hydrogen production [1-3,7,8,13-19]. However, TiO; is a wide bandgap
semiconductor (3.2 and 3.02 eV for the anatase and rutile phases, respectively [20]) that
requires UV light (5% in the solar spectrum) for its activation. To reduce the bandgap,
TiO, should be either doped (e.g., with N, Ta) or used in the form of nanotubes [13,21-26].
Other important studies are related to the applications of TiO; as protective coatings in
microelectronic and optical devices and as luminescent compounds [27-32].
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TiO, forms three naturally occurring polymorphic crystalline modifications in the
form of the corresponding minerals: brookite with rhombic, anatase and rutile with a
tetragonal crystal lattice [1,4,33]. Rutile is the most thermodynamically stable modification.
During heating, anatase and brookite irreversibly transform into rutile, and the stability of
the crystalline modification depends on the size of its constituent crystallites [34,35]. Both
the temperature of phase transformation and the properties of the produced nanostructured
materials are largely determined by their manufacturing technology [36].

Highly dispersed titanium dioxide-based materials for various applications on a
laboratory scale are produced by such well-known wet chemistry methods as sol-gel,
microemulsion, precipitation, hydrothermal, solvothermal, electrochemical, sonochemical
and microwave [2-5,9-11,21,22,25,26,37-42]. These methods allow fabricating TiO, nanos-
tructures with different phase compositions and morphology, in particular as nanoparticles,
nanorods, nanowires, nanotubes and mesoporous structures. The most promising and
widely used method for producing TiO; is the sol-gel method [3-5,8,9,22,37,41,43], allow-
ing obtaining TiO, powders with well-defined particle size and shape, excellent purity
and homogeneity [37,43]. In the framework of the mentioned methods, inorganic salts
(e.g., titanium tetrachloride TiCly) or organometallic compounds, such as metal alkoxides
(e.g., titanium (IV) isopropoxide Ti{OCH(CHs),]4) are usually used as titanium-containing
precursors. However, these compounds have high reactivity with water, which must be
taken into account both during the material synthesis to ensure good reproducibility and
during the follow-up storage. It should be mentioned that titanium alkoxides are expensive
and not environmentally friendly.

Thus, to date, there is a huge number of publications presenting various methods
for synthesizing highly dispersed titanium dioxide-based materials with a wide range of
functional properties. Nevertheless, the current pace of technological development requires
new synthesis approaches characterized by simplicity, ease of scaling, good reproducibility,
use of inexpensive raw materials, and allowing the production of materials with the
required characteristics. The extraction—pyrolytic method (EPM) could be considered as
one of these new developments.

The EPM is used to fabricate homogeneous nanocrystalline powders and films of oxide
materials for various purposes [44-48]. The EPM belongs to wet chemistry methods. Using
the EPM, the following steps are required: fabrication of extract (metal-containing precur-
sor) via the method of exchange extraction by fatty (aliphatic monocarboxylic straight- or
branched-chain) acids with the addition of alkali [49] and following thermal treatment—
pyrolysis. This technique is quite simple, inexpensive and does not require complex
equipment. One of the important advantages of the EPM is using organic extracts (solu-
tions of metal carboxylates in a carboxylic acid or solvent) as metal-containing precursors.
Such precursors are resistant to humidity and do not crystallize during long-term storage.
In addition, high-purity inorganic metal salts are not required for their preparation. During
liquid extraction, the target component is purified from impurities. The liquid extraction of
metal ions by monocarboxylic acid (HR) proceeds via a cation exchange mechanism and
can be generally represented by Equation (1):

Me™t (w) + HHR(O) S MeRn(O) + 1’1H+(w) (1)

where the subscripts w and o denote the aqueous and organic phases, respectively.

Alkali is added to the extraction system to increase the efficiency of target metal
extraction since monocarboxylic acids themselves (with or without a diluent) are usually
ineffective extractants [49].

To date, the EPM has already been applied for producing photoactive titanium dioxide
films [45]. As the initial components for preparing the Ti-containing extract, the authors
used an aqueous solution of titanium (IV) oxysulfate TiOSO4 and o-branched monocar-
boxylic acids of C5—Cg fractions as an extractant.

The aim of this work is to develop the EPM for the production of nanocrystalline TiO,
powders using valeric acid-based extracts; and to study the effect of pyrolysis conditions
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on the phase composition, the mean crystallite size, and morphology of the fabricated
materials. In addition, the results acquired by the EPM are compared with those related to
the simplest and widely known production method—precipitation. In both approaches,
the initial components are a freshly prepared aqueous solution of titanium (III) chloride as
a titanium source and an aqueous solution of sodium hydroxide as an alkaline agent.

2. Materials and Methods
2.1. Preparation of the Precursors
2.1.1. Preparation of Aqueous Solution of Titanium (III) Chloride TiCl;

An aqueous solution of TiCl3 in diluted hydrochloric acid HCl with a metal concentra-
tion of 0.1 M was used as a titanium source. It was prepared immediately before both ex-
traction and precipitation. For this, 1.200 g of titanium powder (particle size 4 = 63-100 pm)
was dissolved in 60 mL of HCl solution (1:1) during heating until the metal was completely
dissolved. Thereafter, the solution was cooled down and diluted with distilled water to a
volume of 250 mL.

2.1.2. Preparation of Titanium-Containing Precursors (E) via Liquid-Liquid Extraction

Valeric acid C4H9COOH without diluent was used as an extractant. During preparing
the precursor E1, the initial ratio of the volumes of the aqueous (V) and organic (V,)
phases in the extraction system was 3:1. For the extraction, the extractant and TiCls solution
(pH ~0.65) were placed in a separatory funnel, and 1 M NaOH solution was added step-
by-step. When the organic phase (extract) turned deep blue, the addition of alkali was
stopped. After a clear phase separation (~10 min), the aqueous phase was removed from
the funnel, and its pH value was around 1.15. The organic phase was filtered through a
cotton filter to remove water droplets.

To increase the titanium content in the organic phase for preparing the precursor E2,
the initial V,:V, ratio was taken as 5:1. The metal was extracted from TiCl; solution with a
pH value of ~0.74. Moreover, the addition of an alkaline solution was continued until a
saturated solution of titanium valerate Ti(C4,Hy9COO); in valeric acid was obtained, i.e., a
finely dispersed precipitate appeared in the organic phase. As a result, the achieved pH
value of the aqueous phase after extraction was about 1.23. To separate a small amount of
the formed precipitate and to obtain a true solution, the organic phase was filtered through
a double thick paper filter.

2.1.3. Preparation of Titanium-Containing Precursor (P) via Precipitation

As the first step, alkaline hydrolysis of TiCl; solution was carried out at room temper-
ature. 0.5 M NaOH solution was added dropwise (at a rate of ~ 3 mL/min) under vigorous
stirring until the pH of the aqueous phase reached ~6.0. Then, the mixture was left to stay
for a day. This was followed by filtration, multiply washing of the resulting precipitate
with distilled water (the presence of chloride ions in the decanted solution was controlled
with an AgNOj; solution) and, after all, with ethanol. The precipitate was dried at room
temperature for 36 hours, ground in an agate mortar and used as a precursor (P).

2.2. Thermal Treatment of Precursors

The resulting precursors E1 and E2, as solutions, and precursor P as powder were
heated from room temperature to 350-750 °C at a heating rate of 10° /min, annealed for
an hour and rapidly cooled down under ambient conditions. Such thermal treatment
was performed in laboratory furnace SNOL 8.2/1100. Thereafter, the produced samples
were ground by pestle in an agate mortar and collected. For further investigations, only
as-prepared powders without any additional posttreatment were used.

2.3. Characterization Methods

The metal concentration in the resulting precursors E was determined by the gravi-
metric method [50].
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The thermal behavior of all the produced precursors was studied by simultaneous
thermogravimetric analysis and differential scanning calorimetry (TGA-DSC) using the
STA PT1600 (LINSEIS). The samples under test were heated from room temperature to
700 °C or 1000 °C at a rate of 10°/min in the static air atmosphere.

The phase composition of the produced materials was investigated by the X-ray
diffraction (XRD) method (diffractometer D8 Advance, Bruker Corporation) with CuKa«
radiation (A = 1.5418 A). The XRD patterns were referenced to the PDF ICDD 00-021-
1272 for anatase phase of TiO,, PDF ICDD 00-021-1276 for rutile phase of TiO,, and PDF
ICDD 00-014-0277 for sodium polytitanate (Na;TigO13) identification. The mean crystallite
size (d) of the titanium dioxide was defined from the half-width of the diffraction peaks
(101) of anatase (d4) and (110) one of rutile (dr) by the Scherrer method (EVA software).
The weight fraction of the rutile phase (Wg) was determined by Gribb and Banfield [34]
using integrated intensities A (areas) of the most intense diffractions peaks as follows
(Equation (2)).

_ AR
~ 0.884A,4 + AR

IR spectra were recorded at room temperature using Bruker Tensor II FTIR spectrome-
ter at a resolution of 4 cm~! and 36 scans for each spectrum. TiO, powder was mixed with
KBr, and the pellets with a 7 mm diameter were prepared using Specac Mini-Pellet press
under a load of 2000 kg. The morphology of the samples was examined by transmission
electron microscopy (TEM) (FEI Tecnai G2 F20 operating at 200 kV).

Wr -100% @)

3. Results
3.1. Precursors Characterization

Titanium-containing precursors (E) During extraction, Ti** cations are transferred
from the aqueous phase into the organic phase as Ti(C4HoCOO)3, and the organic solution
gradually turns deep blue. As a result of the storage of the produced titanium-containing
extract E1 in a glass flask, the organic solution underwent discoloration, first, gradually and
after ~60 minutes complete. The process was likely associated with the oxidation of Ti (III)
to Ti (IV) by atmospheric oxygen. To our knowledge, there is no data on the composition
of the final titanium (IV) carboxylate formed this way in an organic solution. However, it
can be assumed that this compound may have the following composition: Ti(C4HoCOO),
and/or (C4H9COO); TiOTi(OOCC4Hy)s.

Note that the discoloration of the organic titanium-containing extract E2 was observed
already during filtration. According to the results of the gravimetric analysis, the titanium
concentration in the precursors E1 and E2 was 0.14 M and 0.50 M, respectively.

Thus, colorless transparent organic solutions with different titanium concentrations
were prepared. Upon storage of E1 and E2 precursors in glass flasks with ground-glass
stoppers at room temperature, no changes in color and transparency (homogeneity)
were observed.

Titanium-containing precursor (P) As a result of the produced precipitate (gel) stor-
age during the day, its color changed from deep gray-blue to white because of the oxidation
of titanium (III) hydroxide by atmospheric oxygen and the formation of hydrated titanium
dioxide (titanium oxyhydrate) TiO,-nH,O [51].

3.2. Thermal Behavior of Precursors E1, E2, and P

The main thermal decomposition products of the salts of many carboxylic acids are
ketones and the corresponding metal oxides, while the temperature of their decomposition
is characteristic for each certain compound [52]. This is why the study of the thermal
behavior of the extracts produced during the EPM (solutions of metal carboxylates in
carboxylic acid or diluent) is rather important and necessary for determining the minimal
pyrolysis temperature for the production of organic impurity-free oxide materials.

The results of TG-DSC analysis of liquid precursors E1 and E2 with different titanium
concentrations are shown in Figure 1. According to the data presented, studied precursors
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demonstrate similar thermal behavior during the heating process. At the same time, the
thermal effects are more pronounced for the precursor with higher titanium concentration
(E2) and just these results (see Figure 1B) will be discussed in detail.
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Figure 1. DSC (1) and TGA (2) curves of the precursors produced by extraction—pyrolytic method (EPM): (A) E1; (B) E2.
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The precursor E2 is thermally stable up to a temperature of ~30 °C. The first endother-
mic peak on the DSC curve at ~153 °C is accompanied by active sample weight loss. In
the temperature range from ~30 °C to ~153 °C (fragment I), this weight loss is mainly
associated with the removal of free extractant (valeric acid) and co-extracted water, while at
a further temperature increase (fragment II)—with the decomposition of the titanium (IV)
carboxylate. The second broad asymmetric endothermic peak is observed at ~180-306 °C
(fragment III). In the region of this peak, the decomposition of titanium carboxylate still
continues and is followed by active evaporation of the organic decomposition product
(probably, dibutyl ketone C4HgCOC4Hyg with Tpj1ing = 182-187 °C). According to the TG
curve, the weight loss reaches ~82% at ~210 °C and stops. A further temperature rise
to 700 °C is accompanied by a gradual increase in the sample weight by ~4%. That is
most likely associated with the gradual oxidation of titanium monoxide TiO to TiO, using
the proposed in Ref. [53] decomposition mechanism of the metal (IV) carboxylate via the
formation of metal monoxide as intermediate. Moreover, at ~210-300 °C, this process
occurs simultaneously with the removal of volatile organic decomposition products. The
increase in sample weight observed on the TG curve (Figure 1B, curve 2) shows that TiO
oxidation is the dominant process. At the same time, the predominance of the endothermic
evaporation process is observed as well (see curve 1 in Figure 1B). A weak exothermic peak
at ~318 °C (fragment IV) on the DSC curve is caused by the combustion of gaseous organic
residue. In the temperature range, ~433-561 °C (fragment V), an intense asymmetric
exothermic peak assumes the superposition of several thermal effects: crystallization of an
amorphous phase, anatase-to-rutile polymorphic transformation and pyrocarbon burnout.
Thus, according to the analysis of the obtained results, it could be assumed that upon
heating, the organic decomposition product (most likely, ketone) is removed after forming
TiO and its oxidation to TiO5.

For comparison, the thermal behavior of a solid precursor P (titanium oxyhydrate
sample) was also studied. The presented thermogram (Figure 2, curve 1) shows two
endothermic and one exothermic peak. The endothermic effect observed at ~56-150 °C
(fragment I) is accompanied by active weight loss (~20%) of the dried precipitate due to the
removal of adsorbed water. With a further increase in temperature, the sample loses crys-
tallization water. This process is accompanied by a wide endothermic peak at ~208-308 °C
(fragment II) and a small weight loss (~5%). The intense exothermic peak at ~776 °C
(fragment III) is associated with the crystallization of titanium dioxide and polymorphic
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anatase-to-rutile transformation. Ongoing slight loss of sample weight is probably due to
the continuation of the dehydration process.
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Figure 2. DSC (1) and TG (2) curves of the precursor (P).

According to Figures 1 and 2, due to the different chemical compositions, the thermal
behavior of the studied precursors differs significantly. Thus, the observed weight loss
of the precursor P upon heating is associated with successive dehydration processes. At
the same time, thermal transformations in precursors E are associated with the complex
decomposition of titanium carboxylate, which is preceded by the evaporation processes of
the solvent (valeric acid) and co-extracted water being the parts of the extracts.

3.3. XRD Analysis

To obtain a solid final product from precursors E1 and E2, based on the TG-DSC
results (see Figure 1), the minimal temperature of pyrolysis was chosen as 350 °C. To
study the effect of the precursor preparation method on the phase composition, anatase-to-
rutile transformation temperature, and the mean crystallite size of TiO;, heat treatment
of precursors E and P was carried out in the range from 450 °C to 750 °C with a tem-
perature step of 100 °C. Table 1 summarizes the results of the XRD analysis of all the
produced materials.

The study of the regularities of phase formation during the pyrolysis of the precursor
E1 testifies (Figure 3, Table 1, samples E1-1-E1-6) that amorphous powders are produced
at temperatures of 350 °C and 400 °C. The crystallization of anatase polymorph begins at
450 °C, while the polymorphic anatase-to-rutile transformation starts at 650 °C. TiO,
powder produced at 750 °C contains rutile polymorph with only a small anatase admixture
(W4 =1.1%).

According to the XRD analysis (Figure 4, Table 1, samples E2-1-E2-6), the heat treat-
ment of a more concentrated precursor E2 at 400 °C corresponds to the beginning of the
anatase phase crystallization. Pyrolysis of the precursor at 550 °C and 650 °C leads to the
gradual polymorphic transformation of anatase to rutile with a simultaneous increase in
the mean crystallite size of anatase from ~20 nm to ~35 nm and of rutile from ~30 nm
to ~45 nm, respectively. As a result of heat treatment at 750 °C, a monophase product
consisting of a rutile polymorph with dg ~53 nm is formed.

Thus, an increase in titanium concentration in the precursor solution from 0.14 M
to 0.50 M decreases the temperature of anatase-to-rutile transformation by ~100 °C (see
Figures 3 and 4, Table 1).
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Table 1. Impact of the heat treatment conditions of titanium-containing precursors on the phase

composition and mean crystallite size of the final products.

Production Conditions

XRD Analysis Results

Pyrolysis
Sample Nr. Precursor Temperature Phas'e . d, nm W, %
o Composition
T, °C
El1-1 E1l
350 Amorphous - -
E2-1 E2
E1-2 El Amorphous - -
400
E2-2 E2 Anatase 5 100
E1-3 El Anatase 8 100
E2-3 E2 450 Anatase 9 100
P-1 P Anatase 9 100
E14 El Anatase 15 100
Anatase 20 87.7
E2-4 E2 550 Rutile ~30 12.3
P2 P Anatase 10 100
Anatase 30 80.9
E1-5 El Rutile ~40 19.1
Anatase ~35 20.6
E2-5 E2 650 Rutile 45 79.4
Anatase 14 96.4
P3 P Rutile Discerned 3.6
Anatase . 1.1
El1-6 E1l Rutile Discerned 65 98.9
E2-6 E2 750 Rutile 53 100
Rutile 68 100
P-4 P NazTi6013 - -
A - anatase
R - rutile R

R
R
R
R R
R RR R
El-6 Al N ), A J 750 °C

3

a

g "

w

¥ levs A A A A A A 6S0°C

3 |E
El-4 550 °C
— 450°C
El-2 400 °C
10 20 30 40 50 60 70

2-Theta, degree

Figure 3. XRD patterns of nanocrystalline TiO, powders produced from the precursor E1 at different

pyrolysis temperatures. * Signal of a silicon substrate from the measuring cuvette.
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A - anatase
R - rutile
R
E2-6 RR IR 7502c
PEN— | | W
3 o 3
]
- |E2-5 A 650 °C
Z E2.
g
E |E24 550 °C
E2-3 . 450 °C
E22 400 °C
E2-1 Fop : ol | 350 °C
10 20 30 40 50 60 70

2-Theta, degree

Figure 4. X-ray diffraction patterns of nanocrystalline TiO, powders produced from the precursor
E2 at different pyrolysis temperatures.

According to XRD analysis, precursor P is amorphous (Figure 5, Table 1). The anatase
phase, produced as a result of the heat treatment of precursor P, is similar to these at the
precursor El treatment at 450 °C and 550 °C. The increase of the processing temperature to
650 °C or 750 °C leads to the formation of two phases of TiO,. Moreover, depending on
the heat treatment temperature, either anatase or rutile is a dominating phase (Figure 5,
samples P-3 and P-4). It was also found two processes occur simultaneously at 750 °C: the
polymorphic transformation of anatase into rutile and the crystallization of the admixture
phase, Na,TigOq3. This phase is a product of the interaction of NaOH with TiO; at high
temperatures, i.e., during the preparation of a precursor P, it is impossible to completely
remove the residual amounts of NaOH by washing the precipitate (gel). In the case of
the EPM, a system of two immiscible liquids is used, and the target product (titanium
carboxylate) is dissolved in the organic phase, while water-soluble reaction components, in
the aqueous phase. Hence, the presence of impurity phases in the TiO, samples was not
established (see Figures 3 and 4).

A - anatase
R - rutile
N - Na2TisO13

Intensity, a.u,

Precursor P " di = n
A PR

10 20 30 40 50 60 70
2-Theta, degree

Figure 5. XRD patterns of nanocrystalline TiO, powders produced from the precursor P at different
processing temperatures.
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3.4. FTIR Spectroscopy

FTIR spectroscopy was used to determine the conditions for the thermal treatment
of the precursor E2 that ensure complete removal of the organic component during
TiO, production.

The FTIR spectra (see Figure 6) contain the peaks at 3449 cm ! and 1622 cm ™ which
correspond to the stretching and bending vibrations of-OH groups. Weak absorption bands
at 2362 cm~! and 2332 cm ™! in the samples are associated with the presence of carbon
dioxide CO, absorbed from the atmosphere [54]. In the case of the samples produced at
350 °C or 400 °C (Figure 6, samples E2-1 and E2-2), the spectra contain the absorption
bands peaked at 1520 cm ™! and 1375 cm ™!, which indicate the presence of undecomposed
organic residue in these materials [55,56]. The presence of TiO, in the studied materials
is confirmed by a wide absorption band at ~1000 cm~'-400 cm ™! associated with the
vibrations of Ti-O-Ti bonds in the TiO; lattice [57,58]. In the mentioned spectral region,
a shift of the maximum from 515 cm ™! to 442 cm ™! is observed upon the decrease in the
precursor pyrolysis temperature from 550 °C to 350 °C (Figure 6, samples E2-4-E2-1). This
fact may be related to the changes in the size of the produced TiO; particles, as described
earlier in [41,59]. This is also consistent with the results of our XRD analysis (Table 1),
under which a decrease in the pyrolysis temperature of the precursor E2 in this temperature
range leads to a decrease in the mean crystallite size of anatase from 20 nm to 5 nm, and,
finally, to amorphization. Thus, according to our results, to produce organic impurity-free
TiO, powders via the EPM, the minimal pyrolysis temperature of the extracts (precursors
E) should be 450 °C. The data obtained do not contradict the results of the TG-DSC analysis
(Figure 1) presented above. A similar picture was observed at the comparison of the
infrared spectra for bulk and nanosized AIN and LaPO4 [60-62].

-C=0
-OH CO2(ads) 1520 cm™* .
3449 cm™1 : i
; -CHs 515 em~!
i 2362 cm™! i 1375 cm™! ;
i 12332 cm™! -OH ' '

1622 cm™t!
H

a8 [
" A !

Absorbance, a.u.

4000 3600 3200 2800 2400 2000 1600 1200 800 400
1

Wavenumber,cm™

Figure 6. FTIR spectra of the samples produced from the precursor E2 at different pyrolysis tempera-
tures: E2-1—350 °C, E2-2—400 °C, E2-3—450 °C, E2-4—550 °C.

3.5. Transmission Electron Microscopy

Figure 7 demonstrates TEM results for the anatase and rutile powders produced by the
EPM and, for comparison, for the anatase sample produced by the precipitation method.
According to the results obtained, the particles with irregular rounded shapes are formed
as a result of the low-temperature treatment (450°C) of both precursors (Figure 7A,C).
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Nanoparticles with a mean size of ~8 nm can be observed that is in line with the XRD
results (d4 = 9 nm, Table 1).

Fraction, %
3 @ -

Fraction, %
Fraction, %

o 0
3 4 85 & 7 8 @ 1011 12 13 14 15 4245 46-40 50-83 8457 B8-61 6265 6660 7073
Particle size, nm Particle size, nm

— . o, B

3 4 5 6 7 8 9 10 11 12 13 14 18
Particle sizo, nm

Figure 7. HR-TEM (a bottom raw), TEM (a medium raw) images and histograms of the particle size
distribution (a top raw) of samples produced by the EPM (A,B) and precipitation method (C) at
temperatures: (A)—450 °C (sample E2-3); (B)—750 °C (sample E2-6); (C)—450 °C (sample P-1).

In the case of the EPM, the increase in the pyrolysis temperature up to 750 °C leads to
the formation of layered aggregates consisting of the faceted particles with a mean size of
~11 nm (Figure 7B). It is possible that the formation of such structures is associated with
the thermal behavior of the precursor upon heating (see Section 3.2), in particular, with
the effect of the pyrolysis products of the organic precursor on the nanoparticle surface.

The average size of the aggregates is about 58 nm that is consistent with the XRD data
(dg =53 nm, Table 1).

4. Conclusions

This study suggests an original two-stage approach for synthesizing nanocrystalline
TiO, powders—the extraction—pyrolytic method (EPM).

The conditions for preparing titanium-containing extracts (precursors) using valeric
acid without a diluent as an extractant were determined. The minimum temperature of py-
rolysis (450 °C) of the precursors for organic impurity-free nanocrystalline TiO, production
was established. We have shown that the phase composition of the resulting powders is
affected by the pyrolysis temperature and titanium concentration in the precursor solution.
According to the XRD results, depending on pyrolysis conditions, the produced TiO, sam-
ples contain anatase (d4 ~8-15 nm), mixed anatase-rutile or rutile (dr ~53 nm) polymorphs.
We have shown that the decrease in titanium concentration in the precursor solution from
0.50 to 0.14 M leads to the increase of the temperature of anatase-to-rutile polymorphic
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transformation by ~100 °C. Comparative analysis of the results for the materials produced
by two methods—the EPM and the precipitation, revealed some differences. According to
the XRD data, as a result of the heat treatment at 750 °C, impurity phases were not detected
in the EPM-produced materials, while the Na; TigO;3 impurity phase was identified in the
material produced by the precipitation method.

The results presented in this study could serve as a solid basis for further developing
the EPM for the cheap and simple production of nanocrystalline TiO,-based materials in
the form of doped nanocrystalline powders, thin films and composite materials.
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