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1. INTRODUCTION 

T H E  methods of modern quantum field theory have re- 
cently more and more penetrated into statistical phys- 
ics. This is  connected with the fact that the basic prob- 
lems in both fields are very much the same. The prob- 
lem of a particle interacting with a quantized field, o r  
that of a system of interacting fields, is formulated in 
terms of second-quantized Hamiltonians ( o r  Lagrangi- 
ans ) just as the basic problem of statistical mechan- 
ics,  that of a system of interacting particles. The pe- 
culiar nature of statistical mechanics consists in that 
we are dealing there with “large” systems with a very 
large number of particles, and a re  interested only in 
the asymptotic properties of such systems for which 
the number of particles N tends to infinity (while V/N 
= const, where V is the volume of the system). This 
introduces peculiar difficulties when one wants to ap- 
ply perturbation theory in statistical mechanics, as the 
perturbation operators a re  not small and can lead to 
te rms  proportional to powers of the volume V which 
must, of course, cancel one another in the final result. 
These difficulties have comparatively recently been 
solved by the creation of a regularized perturbation 
theory for large systems, by means of expansions in 
connected diagrams. Such a theory has been developed 
both for  the zero temperature case (Van Hove’, Gold- 

temperature case ( Dyson4, Bloch, and De Dominicis’ ). 
It is characteristic of the systems studied in statis- 

tical mechanics that their energy levels are very 
dense so that the distance between them tends to zero 
as V - 03. The spectrum is thus practically continu- 
ous and the perturbation energy is always larger than 
the distance between the levels. One must in that case, 
strictly speaking, use perturbation theory for the con- 

* stone2, and Hugenholtz3), and for the non-vanishing 

tinuous spectrum. It is therefore particularly impor- 
tant here to work out methods which are not directly 
based upon perturbation theory. 

One of the important concepts of quantum field 
theory is that of the Green functions, which a r e  convei 
ient for the study of the properties of interacting quan 
tized fields.6 The use of these concepts turns out to bt 
useful also in ’statistical mechanics. The application 
of Green functions makes it possible, for instance, to 
obtain for the energy regularized expansions which do 
not contain higher powers of the volume; (cf. Klein an( 
Prange‘) and in this way there is no difficulty in apply 
ing perturbation theory to large systems. The applica 
tion of Green functions turns out to be useful in those 
cases where one can sum some type of perturbation- 
theory diagrams. Tasks of this kind a re  performed 
more simply with Green functions. 

The application of Green functions is particularly 
fruitful in the quantum theory of fields when combined 
with spectral representations of the kind of the Leh- 
mann-KZ116n relations.’ Spectral representations for 
the time-correlation functions and for retarded Green 
functions were first established and used in statistical 
mechanics in the theory of fluctuations and in the sta- 
tistical mechanics of irreversible processes, begin- 
ning with a paper by Callen and Welton’ (see Kubo’s 
paper” ). 

The spectral theorems for the causal time-depend- 
ent Green functions were considered in reference 11 
for  zero temperature and in reference 1 2  for non-van- 
ishing temperatures, and were used for different prob. 
lems of statistical mechanics in references l la-18, 
51-52, 7, and 61. 

on the application of Green functions in statistical 
physics, and we refer the reader to the references 

In the present paper we shall not discuss all papers 
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given (see also references 50, 53, 54, and 66-69). We 
however, discuss at greater length one aspect 
seems to us to be very promising, namely, the 

application of double-time temperature-dependent ( re- 
tarded and advanced) Green hnctions. We shall give 
a brief account of the basic properties of the tempera- 
ture-dependent double-time Green functions (Secs. 2 
and 3) and their simplest applications to the theory of 
irreversible processes (Sec. 4), to the theory of super- 
conductivity (Sec. 6), to ferromagnetism (Sec. 7), and 
to a system of electrons interacting with the lattice in 
normal metals and semiconductors (Sec. 8). In the ap- 
plications we shall follow Bogolyubov and Tyablikov19 
and use not the causal Green functions, as is usually 
done, but the double-time retarded and advanced Green 
functions. We shall show that they are very convenient 
for applications in statistics as they can be analytically 
continued in the complex plane. Sometimes one uses 
also in statistical mechanics Matsubara’s temperature- 
dependent Green functions, *’ which are independent of 
the time, but they are apparently less convenient than 
the temperature- and time-dependent Green functions. 

2. DOUBLE -TIME TEMPERATURE -DEPENDE NT 
GREEN FUNCTIONS 

2.1 Causal. Retarded, and Advanced Green Functions 

The Green functions in statistical mechanics are the 
appropriate generalization of the concept of correlation 
functions. They a re  just as intimately connected with 
the evaluation of observed quantities and they have 
well-known advantages when equations are formulated 
and solved. 

We can consider in statistical mechanics, as in the 
quantum theory of fields, different kinds of Green func- 
tions, for instance: the double-time causal Green func- 
tion Gc( t,t’ ), defined in terms of the average value of 
the T product of operators, o r  the retarded and &- - vanced Green functions G r (  t.Y) and Ga( t,t‘) 

G, ( t ,  t ’ :  = << A ( t ) ;  B (1 ’ )  >> = - i < T A  ( t )  B ( t ’ )  > , (2. la) 

(2.lb) 

(2.lc) 

where < . . .> indicates that one should average over 
a grand canonical ensemble, and where << A( t )B( t‘) 
>c,r ,a are abbreviated notations for  the correspond- 
ing Green functions. 

ct(t, t ’ ) = ~ ~ ( t ) ;  ~ ( t ’ ) > ~ =  - i e ( t - t t ‘ ) < [ . 4 ( t ) ,  ~ ( t 7 1 > ,  

G, ( t ,  t ‘ )  = << A ( t ) ;  B ( t o  = ie ( P  - t )  < [ A  ( t ) ,  B ( t ’ ) ~  >, 

a 
<. . .> =Q-lSp(e-T ...) ( e = k T ) ,  (2.2) 

Q = S p ( e  a ) = e  0 (2.3) 
ax P _- -- 

(Q is the partition function for the grand ensemble, 
and C2 the thermodynamic potential of the variables 

V, 8, and p ) .  The operator X includes a term with 
the chemical potential p 

.:V = H - UN. (2.4) 

H is the time-independent Hamiltonian operator and 
N the operator of the total number of particles; A( t ) , 
and B( t ) are the Heisenberg representations of the 
operators A and B, expressed in te rms  of a product 
of quantized field functions ( o r  of particle creation 
and annihilation operators )* 

( a  system of units in which h = 1 is used throughout ). 
The symbol T indicates the time-ordered o r  T 

product of operators, which is defined in the usual way 

where 

Finally, [ A ,  B] indicates the commutator or  anti- 
commutator 

[ A ,  B ] = A B - q B A ,  q =  * 1. (2.7) 

The sign of in (2.6) and (2.7) is chosen positive o r  
negative by considering what is most convenient for 
the problem. One usually chooses the positive sign, if 
A and B are Bose operators, and the negative sign 
if they are Fermi operators, but the other choice of 
the sign of q is also possible. Generally speaking, A 
and B are neither Bose nor Fermi operators, for  
products of operators can satisfy more complicated 
commutation relations. The sign of q for multiple- 
time Green functions i s  usually determined uniquely, 
depending on whether an odd o r  even permutation of 
the Fermi operators in these functions is involved in 
going over to the chronological order [see (2.13)]. 

the form 
We use (2.6) and (2.7) to write (2.la, b, and c) in 

(2.8a) 

We note that when the time arguments are the same, 
t = t‘, the Green functions (2.8) are not defined because 
of the discontinuous factor O( t-t‘). This indeterminacy 
is well known from the quantum theory of fields. 

From the definition (2.1) o r  (2.8) we see that the 
Green functions applied in statistics differ from the 

*Green functions constructed from operators in the Heisenberg 
representation with ‘3% a H - pN were applied in references 51, 
18, and 19. 
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field-theoretical Green functions only in the way the 
averages are taken. Instead of averaging over the 
lowest (vacuum ) state of the system, one averages 
over the grand canonical ensemble (2.2). The Green 
functions in statistics depend therefore not only on the 
time, but also on the temperature. It is clear that 
when the temperature tends to zero the Green functions 
(2.1) go over into the usual field-theoretical Green 
functions. 

dental. It is very convenient, for when it is used no 
additional limitation on the constancy of the total num- 
ber  of particles need be taken into account, as one must 
do, for instance, in the canonical ensemble, and the oc- 

The application of the grand ensemble is not acci- 

af, a; are the annihilation and creation operators 
(Fe rmi  o r  Bose operators),  v f (x)  is a complete or -  
thogonal set of one-particle functions, norlmalized in 
some volume V, for instance, cpf(x) =V-zei (fx) for 
spinless particles, where f is the momentum; for  par- 
ticles with spin f = ( f ,  (T ) indicates both the momentum 
and the spin. The time-ordered o r  T product of n op- 
erators  At( xi), . . . , An( Xn) is defined as usual as their 
product in chronological order, multiplied by q = ( -1 ) p, 
where P is the parity of the permutation of the Fermi 
operators when we change from the order 1,2,. . . , n 
to the chronological order  

T ( A 1  (~1)’ . . v 4, (xn)) = M j ,  ( z j , ) ,  . . * v A j , , ( X j , , )  

ti, > t j a  > a  * . >tia; (2.13) cupation numbers of the different states are independent. 
W e  note that in the case of statistical equilibrium 

the Green functions Gc( t,t’), G r (  t,t‘), and Ga( t,t’) 
depend on t and t’ only through (t-t‘). Let us  consider 
Gc( t,t’), for instance, and write it in explicit form, 
using the commutability of the operators under the 
Sp sign 
~ , ( t ,  t ’ ) =  - ie(t  - ~ I ) Q - ~ S ~  ~,~“i(f--‘)-~B)~,--~(~--’)g~ I 

- ille(ti _t)Q-lSp{e~[li(f’--r)--B]B,i~~E(t’-rr)A) (p =f) . 
(2.9) 

Gc(t,t’) depends thus, indeed, only on t-t’. We can 
likewise verify that Gr(  t,t’) and Ga( t,t’) depend only 
on t-t’ 
G c ( t ,  t ’ ) = G c ( t - t ’ ) ,  G,( t ,  1 ‘ )  

= G, ( t  - t ’ ) ,  G, ( t ,  t ’)  = G, ( t  - t’). (2.10) 

For the time being we introduced the Green func- 
tions (2.1) purely formally, by analogy with the quan- 
tum theory of fields. We shall satisfy ourselves now 
by concrete examples that they are very conveniently 
applied in quantum statistics to problems concerning 
a system of a large number of interacting particles. 
One can choose for the operators A and B operators 
of different kinds: for instance, Fermi o r  Bose oper- 
a tors  and their  products (Secs. 6 and 8), Pauli opera- 
tors  and their  products (Sec. 7), density operators, o r  
current operators (Secs. 4 and 8). The choice of the 
operators A and B is determined by the conditions of 
the problem. 

The Green functions (2.1) are double-time Green 
functions, in contradistinction to the causal multiple- 
time Green functions 
G,(xl, t , ,  . , ., xntn; x;t;,  . . ., &ti )  

= ( i)” ( T q  ( ~ l t , ) ,  . * q (xntn) l++(x;ti)% * . > q+(&G))v 
* (2.11) 

where +(x,t) and #‘(x,t) are second quantized field 
functions in the Heisenberg representation 

Xj  = ( X j . t j )  is a point in  space-time. 
Multiple-time causal Green functions of the kind 

(2.11) are well known in the quantum theory of fields, 
where the ave rx ing  is over the “vacuum.” 

We note that the coordinates and the time occur 
symmetrically in the multiple-time Green functions. 
This is not essential for statistical mechanics. Here 
the application of the double-time Green functions 
(2.1) is the most convenient, since we can use for them 
spectral expansions which greatly facilitate the solu- 
tion of the equations for the Green functions. On the 
other hand, the double-time Green functions contain 
sufficiently complete information about the properties 
of a many-particle system so that one can handle most 
problems in statistical mechanics by applying double- 
time Green functions. The most convenient double- 
time Green functions in statistical mechanics a re  the 
retarded and advanced Green functions G r  and Ga.” 
It follows from the definition (2.8b,c) that G r (  t-t’) 
vanishes for t < t’, and Ga(t-t’) for t > t’. W e  shall 
see in the following that the advantage of the functions 
G r  and Ga lies in the fact that they can be continued 
analytically in the complex plane (Sec. 3).  

2.2 Equations for Green Functions 

We shall obtain a set of equations for the Green 
functions (2.1). The operators A( t ) and B( t ) satisfy 
equations of motion of the form 

(2.14) d A 
df i - = A H  - H A .  

The right hand side of (2.14) can be written in more 
detail using the explicit form of the Hamiltonian and 
the commutation relations for the operators. Differ- 
entiating the Green functions (2.la, b, and c) with re- 
spect to t we get the equation 

r 1 4  ( 1 )  +<  i+; B(1’) >, (2.15) 

which is the same for all three Green functions Gc, 
G,, and Ga. since de( - t ) /dt  = - do( t )/dt; we shall 
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therefore simply write G and << . . .>> without indices. 
Taking furthermore into account the relation between 
the discontinuous function O( t ) and the 6 function 
of t 

t 

9 ( t )  = \ 6 ( t )  dt (2.16) 
--m 

and the equations of motion (2.14) for the operator 
~ ( t ) ,  we can write the equation for the Green function 
G in the form 

i 2 = 6 ( t -  t ’ )  ( [ A  ( t ) ,  B (41) + <!A(f )  H ( t )  

L H (1 )  A (1)); B (1’) >> . 
The double-time Green functions on the right hand 

side of (2.17) are, generally speaking, of higher order  
than the initial one. We can construct for them also 
equations of the kind (2.17) and we can obtain a chain 
of coupled eamt;nn* for the Green functions. In Secs. 6 
to 5 we shall consider actual examples ot  such c h a . ~ ~ ~ .  

The chains (2.17) are simply the equations of mo- 
,ion for  Green functions. They must be supplemented 
by boundary conditions; this will be done in the follow- 
:-* hv means of spectral theorems. 

We note tnaL .,: -an also obtain other chains for 
Green functions. for instance, 01 LUG &&&GL- type, 
for which multiple-time Green functions must be used. 
These chains contain quantities in the nature of vertex 
parts, which depend on three time arguments and for  
which there are as yet no spectral theorems. In the 
present survey we shall only use chains of equations 
similar to (2.17), in which we do not go beyond the 
limit of the double-time Green functions, and for which 
there are spectral theorems that fanilitate the formu- 
lation of boundary conditions. 

chain of equations is thus extremely complicated in 
the general statement of the problem. One can some- 
times by some approximate method uncouple the chain 
of Eqs. (2.17), i.e., reduce it to a finite set of equa- 
tions, which can then be solved. At the present time 
there are no general prescriptions for such an  uncou- 
pling. Only in some limiting cases of model Hamilton- 
ians has it turned out to be possible to perform on the 
chain of equations an “uncoupling” which is asympto- 
tically exact as V - 00 (see Sec. 6). 

(2.17) 

6 

Equations (2.17) are exact and the solution of this 

2.3 Time Correlation Functions 

uct of operators in the Heisenberg representation, of 
the kind. 

The average overthe statistical ensemble of the prod- 

.FEA(~ ,  t ‘ ) =  ( B ( t ’ ) A ( t ) ) ;  X A B ( ~ ,  t ’ ) = ( A ( t ) B ( t ‘ ) )  (2.18) 

[the averaging is over the grand canonical ensemble 
(2.2) 1, are of importance in statistical mechanics; we 
shall call these time correlation functions. Indeed, 
when the times are different ( t  f t’) these averages 

yield the time correlation functions which a r e  essential 
f o r  transport processes (see Sec. 4). In the case of 
statistical equilibrium the functions .FBA and 9’~ 
depend, as do the Green functions, only on t - t’ [ see 
(2.9) 1 

.FBA ( t ,  t ’ ) =  .FBA(~ - t ’ ) ;  . F ~ s ( t ,  t ’ ) = . % ~ ~ ( t  - t ’ ) .  (2.19) 

In contradistinction to the Green functions (2.8), the 
time correlation functions do not contain the discon- 
tinuous factor e( t - t‘), and are defined also when the 
times are the same, t = t‘. They give then the average 
values of products of operators 

] (2.20) 
TEA (0) = ( B  ( 1 )  A (0) = ( B  (0) A (OH, 
TAB (0) = ( A  ( 4  B ( 4 )  = ( A  (0) B (O)), 

i. e., the usual correlation functions o r  the distribution 
functions of statistical mechanics, which enable us to 
evaluate the average values of dynamical quantities. 

For a system of interacting fermions ( o r  bosons) 
the Hamiltonian has, for instance, in the case of two- 
body forces, the form 

1 H = 2 & a;ap + 7 LV 2 ’L’ (PIP2; Pip;) Q;laiza~;v UP; 
P Y1P2P;p; 

(PI + P2 = P; + Pi) 9 
(2.21) 

where ap and a; are fermion (or boson) operators, 
p2/2m is the kinetic energy of the particles, and 
Y”( pipz ; pip;) are the matrix elements of the interaction 
energy. We find the average value of the energy by 
averaging (2.21) over the statistical ensemble (2.2) 

P PIP*P;P; 

(PI+ Pa = P; +P2. (2.22) 

The average energy is in this way expressed in terms 
of ‘.Fpp and .Fpipz ; pipi., the one-particle and two-par- 
ticle distribution functions 

(2.23) 

which are well known in statistical physics (see, for 
instance, references 21 and 22). The function .Fpp 
gives the true momentum distribution of the particles, 
and .Fpipz ; pipi describes the correlation between two 
particles. Knowledge of the one-particle distribution 
function enables us to evaluate in general the average 
values of additive dynamic quantities, the pair distri-  
bution function those of binary character,.and so on. 

The time correlation functions (2.18) satisfy the 
equations 

which are obtained by differentiating (2.18) with re- 
spect to t with allowance for  the equations of motion 
for  the operators. We note that since (2.18) is not dis- 

Slava
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continuous at t = t', Eqs. (2.24) do not have the singu- 
lar term 6 ( t  -t') which occurs in Eqs. (2.17) for the 
Green functions. The other terms in (2.17) and (2.24) 
are constructed in the same way, but with the statist ical  
averaging process < . . . > replaced by the << . . . Be, r,a 
processes [see (2.1) 1. 

The correlation functions can be evaluated either by 
the direct integration of Eqs. (2.24), to which must be 
added sti l l  the boundary conditions, o r  indirectly by 
evaluating first from Eqs. (2.17) the Green functions 
<< . . .>&,a (or <<. . .BC 1. The second methd which 
we shall use is considerably simpler, since it makes 
it easier to satisfy the boundary conditions using spec- 
tral theorems (see Sec. 3). 

3. SPECTRAL REPRESENTATIONS 

To solve the equations for  the Green functions it is 
important to have spectral representations that supple- 
ment the set  of equations with the necessary boundary 
conditions. In the present section we obtain these rela- 
tions for  the Green functions (2.la,  b, and c) and for 
the corresponding correlation functions (2.18). 

3.1 Spectral Representstions for the Time 
Correlation ~unctiom'~ 

We obtain first the spectral  representations for the 
t ime correlation functions 

,?-)ml(l- t ' ) = { B ( / ' ) . I ( f j } ,  ;A,>(! -f') = (.l{l)B(J')\.  f3.1) 

Let C y  and E, be the eigenfunctions and eigen- 
values of the Hamiltonian X(X = H - p N )  

22CV = E,C,. (3.2) 

We write out explicitly the statistical averaging opera- 
tion in the definition of the t ime correlation functions 
(3.1) 

E v  -- 
{ B  ( t ' )  -4 (t)) = Q-1 2 ( C ~ R  ( t ' j  -4 ( t )cV)  e a . (3 .3)  

V 

We use the usual procedure of dispersion relation 
theory, which is based upon the completeness of the 
set of functions C,, and we write Eq. (3.3) in  the form 

t B  ( t ' )  . I  (1 ) )  = Q-' 2 (C: B ( 1 ' )  CJ,) (C: A ( t )  C,) e 
E ,  

0 
-- 

v. P 

E V  

= Q-' 2 (C$ B (0) C,) {c; A (0) Cv}e-T e-' ~E~-Ed(t-f') I I3 .4 )  

,-ii-Xfc,= c - i L v t c v ,  c;e'Yc! =C*,rllit, (3.5) 

v. # 

since 

On the other hand 
(-4 ( 1 )  6 (1 ' ) )  = Q-1 r: (G rl (0) C,) 

x ( C ; B ( 0 ) C v ) e  8 e-i(Ev- !4 

v. 

Ev  

(3.6) e ) ( t ' - t )  -- 

Interchanging in the last equation the summation in-  
dices p and v and comparing (3.4) and (3.6) we note 
that we  can write them in the form'." 

where we have introduced the notation 
% 

I (w) -= Q - ~ Z  (c: A (0 )  c,) (c: R (0) cv l e - 8  b (E ,  - E, - w). 
(3.8) V,P 

Equations (3.7) are the required spectral represen- 
tations for the time correlation functions, where 3 ( w )  
is the spectral intensity of the function .FBA(~).  

Equations (3.7) can be obtained without using the 
eigenfunctions of the operator X .  It is sufficient to 
note that F( t - t') depends solely on the difference 
t -t', since the operators under the Sp sign commute: 
(3.8) is thus simply the definition of the Fourier corn- 
ponent. Equation (3.7b) can be obtained from (3.7a) by 
the substitution t -t' - t -t' + i/8, since 

as is easily checked by direct  examination. 

3.2 Spectral Rapreeentatioas for Retarded and 
Advanced Green Functione'o''g 

We consider now the spectral representations for  
the retaded and advanced Green functions Gr( t } and 
G,( t ) (2. lb and c). We can obtain them easily by means 
of the spectral  representations (3.7a and b) for the time 
correlation functions. Indeed, let Gr( E ) be the Fourier 
component of the Green function G r (  t - t') 

0 

G ,  ( t  - t ' )  = S C, ( E )  e-iE ( t - ' ' )  a, (3.10a) 
-a 

m 

(3. lob) 

( W e  use the aame notation for the Fourier components 
of the Green functions as for  the Green functions them- 
se lves .  ) Substituting into (3.10b) expression (2.8b) for 
G r ( t )  we get 

c,  ( E )  = 

1 
G, ( E )  = \ G, (1) eiEl dt. 

-to 

f dte ik  ( t - f ' ;  9 ( I  -q $(.I (q  B (W -q ( B  ( 1 ' )  A W). 
--J) 

(3.11) 

Under the integral sign we have here the'time correla- 
tion functions (3.1). Using f o r  them the spectral repre- 
sentation (3.7a, b), we have 

m 
- 1  

m 

G, ( E )  = \ dw J (m) (3 - q) \ dtei IE-w 0 (i), 
-m -W 

('I" ik 1). (3.12) 

We can write the discontinuous function 8 ( t )  in the 

. c  
form 
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m 

b ( t ) = l  2n \ e- ix 'dx,  (3.14) 
-m 

in integral form 
QJ 

(3.15) 
-Ta 

One verifies easily that the function defined in this way 
has, indeed, the properties of the discontinuous 8 func- 
tion. We shall consider x as a complex variable and 
assume that the integral (3.15) is taken over the contour 
depicted in Fig. 1. The integrand has a pole in the 
lower half-plane at  x = - ic. When t > 0 the contour 
must be closed in the lower half-plane and the integral 
(3.15) is equal to unity. When t < 0 the contour must 
be closed in the upper half-plane and the integral 
(3.15) vanishes. 

FIG. 1 

Using (3.15) and (3.14) we get 
m 

--D 

The Fourier component Gr( E ) of the Green function 
G r (  t ) is thus equal to 

(3.17) 
- -0 

Repeating the same calculation for the Fourier compo- 
nent Ga(  E ) of the Green function Ga( t ) we get 

(3.18) 
-03 

Equations (3.17) and (3.18) can be written as one equa- 
tion 

(3.19) 
-.n 

(the index r corresponds to the + sign and the index 
a to the - sign). 

Up to now we have considered E to be a real quan- 
tity. The function (3.19) can be continued analytically 
in the complex E plane. Indeed, assuming E to be 
complex, we have19 

The function Gr,  a can thus be considered to be one 
analytical function in the-complex plane with a singu- 
larity on the real axis. In the following we shall omit 

the indices r and a and simply write G( E ), assuming 
E to be complex. 

The analyticity of G( E ) follows from a theorem 
proved by N.  N. Bogolyubov and 0. S. Parasyuk in the 
theory of dispersion  relation^.'^ W e  consider first  the 
analytical properties of the function G r (  E ); from 
(3.10b) we have 

a 

(3.21) C 7 ( E ) = %  1 \ C,(t)e'" 'dt,  

-I) 

where 

G, ( t )  = 0 when t < 0. (3.22) 

Let us show that the function G r (  E ) can be analytically 
continued into the region of complex E. Let E have a 
non-vanishing imaginary part 

E = R e  E + i  I m  E = a f i v ,  y > 0. 

W e  then have 
m 

Gr (a f iy) = \ G,  ( t )  eial e-Yf dt, y > 0. (3.23) 
0 

Exp( - y t )  plays the role of a cut-off factor which 
makes the integral (3.21) and its derivatives with re- 
spect to E convergent under sufficieptly general as- 
sumptions about the function G r (  t ).* The function 
G r (  E ) can thus be analytically continued in the upper 
half-plane. One can similarly prove that the function 
Ga( E )  can be analytically continued into the lower 
half-plane 

E=:a+iy ,  y<O. 

If a cut is made along the real axis, the function 

C, ( E )  I m E > O  
G, ( E )  I m E < O  

C ( E )  = (3.24) 

can be considered to be one analytical function consist- 
ing of two branches, one defined in the upper, and the 
other in the lower half-plane of complex values of E. 

If we know the function G( E ), we can find also the 
spectral intensity J( w ) of (3.7a) from the relation 

G (0 + ie) - G (0 - ie) i= - i (eo -q) J (0) 
'u 

(3.25) 

( w  real  ). Indeed, taking the difference of the two ex- 
pressions (3.20) 

G (0 + ie) - c (0 - i E )  

and using the 6 -function representation 

(3.27) 

we arr ive at (3.25). 

*In order that the Bogolyubov-Parasyuk theorem be valid it is  
necessary that G,(t) be a generalized function in the Sobolev- 
Schwartz sense." 
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Were we to decouple in some way the chain of equa- 
tions (2..17) for the Green functions and to find the 
Green function G( E ), we could construct from G( E ) 
the spectral intensity J( w ) of (3.7a) and find expres- 
sions for the time correlation functions (3.7a and b). 

For instance, 

. Y B A  (t  - t ' )  = ( B  (1') A ( t ) )  

(3.28) = i  5 G ( o + i d - G ( o - W  e-iO(l-t,)do. 
0 

-m eE-q 

In the following we shall show by actual examples how 
one can sometimes succeed in accomplishing this pro- 
gram. 

We give a few other simple relations for Green 
functions. Using in Eqs. (3.17) and (3.18) the symboli- 
cal identity 

(3.29) i =P- r i x b ( E - o ) ,  L--o*iie h-o 

where E - 0, E > 0, and P denotes the principal 
value of the integral. We consider here E - w as a 
real  quantity. We find then* 

whence follows a connection between the real and 
imaginary parts of the Green functions 

(3.31) -a 
m 

Equations (3.31) have the form of dispersion relations. 
For similar relations for Gc see the following subsec- 
tion. 

3.3 Spectral Representations for Causal Green 
mctione12 
The properties of the retarded and advanced Green 

functions established in the preceding subsection are 
sufficient for the applications which we shall discuss 
in the second part of this survey. For  the sake of 
completeness we consider in the present subsection 
spectral representations for  causal Green functions.12 

W e  consider the Fourier component Gc( E ) of the 
causal Green function 

*Equation (3.30) expresses the well-known properties of the 
limiting values of a Cauchy type integral which was first estab- 
lished by Yu. V. Sokhotski? in 1873 and later by K. Plemel in 
1908 [see M. A. Lavrent'ev and B. V. Shabat, MeToflm TeopHn 

functions of a complex variable), Gostekhizdat, Moscow, 19581. 
@yHKqH# KOMnneKCHOrO nepeMeHHOrO,(MethodS Of the theory of 

(E real). Using (2.8a), (3.7a and b), and (3.15) and 
integrating, we can write Eq. (3.32) in the form 

lo m - 

-m 

or, applying the symbolic identity (3.29) in the form,12 

(3.34) 
e e - q  

Separating the real and imaginary parts of (3.34) we 
get 

whence follows a relation between the real and imagi- 
nary parts of the Green function Gc( E ) ,  f irst  obtained 
for the single-particle Green function by L. D. Landau12 

0 
O D -  

(3.36) P e n  -q IrnC,(o) 
. -  o--E Re G, (E)=;;  \ 7- do. 
-- e e + q  

[ Equation (3.36) was applied to the theory of supercon- 
ductivity in reference 16.1 E i s  real in Eqs. (3.32) to 
(3.36). We shall not use the causal Green functions for 
they cannot be analytically continued into the complex 
E plane, and are thus inconvenient to apply. 

4. GREEN FUNCTIONS IN THE THEORY OF 
IRREVERSIBLE PROCESSES" 

Green functions are not only applied to the case of 
statistical equilibrium. They a re  a convenient means 
of studying processes where the deviation from the 
state of statistical equilibrium is small. It then turns 
out to be possible to evaluate the transport coefficients 
of these processes in te rms  of Green functions evalu- 
ated for the unperturbed equilibrium state without ex- 
plicitly having recourse to setting up a transport 
equation. 

4.1 The Reaction of 8 System to an External 
Perturbation 

W e  consider the reaction of a quantum-mechanical 
system with a time-independent Hamiltonian H when 
an external perturbation H: is switched on. The total 
Hamiltonian is equal to 
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H -I- H i ,  (4.1) 

where we assume that there is no external perturba- 
tion at t = - 00 

Hi=-= = 0. 

In the case of an adiabatic sGtching on of a periodic 
perturbation we have, for instance, 

Hf=xeeL1e- iQcVQ ( E + O  e > 0 )  (4.2) 
Q 

or  i n  the case of an instantaneous switching on of a 
perturbation 

(4.3) 

where VQ is an operator which does not explicitly de- 
pend on the time. Let A be a dynamical variable which 
does not explicitly depend on the time either. We con- 
sider the influence of the switching on of the perturba- 
tion (4.2) o r  (4.3) on the average value of the operator 
A. 

The average value of A is 

2 ( t )  = SP {e ( t )  A),  (4.4) 

where p (  t )  is a statistical operator which satisfies 
the equation of motion 

i-= ';",t') [H+ W ,  e (t)~ (4.5) 

and the initial condition 
n E 

-1  - -  e ( t )  It=--- = e  = Q e 6 (Q = Spe- F)), (4.5') 

which means that the system was at t = - 00 in a state 
of statistical equilibrium. 

We look for  a solution of Eq. (4.5) of the form 

e ( 4  = e + Ae.  (4.6) 

Neglecting terms H: Ap, since we have assumed that 
the system is only little removed from a state of sta- 
tistical equilibrium, we get then 

i d A e  = [H,, Ael + [ H : ,  el, (4.7) 
where 

A e  ( t )  It=.-m = 0. 

Processes for  which we can restrict ourselves in 
Eq. (4.4) to terms linear in the perturbation are called 
linear dissipative processes. (For a discussion of 
higher-order te rms  see reference 10.) 

To solve Eq. (4.7) we introduce the operator 

AQ 1- - eiEtA~e-iIf1 (4.8) 
and, taking into account that p and H commute, we 
find 

d i be, = Hi, Q] e-fHt, 

A&( - co)=O. (4.9) 

From this we find after integration 
1 I 

i "  
Ae ( t )  = \ efH (r- l )  [Hi, Q] e-f" (1-0 dr .  (4.10) 

-P 

Substituting (4.6) and (4.10) into (4.4) we get 
1 

Z ( t ) = ( A ) $ f .  S ( [ A ( t ) ,  H:(~)])dr, (4.11) 
--P 

where 

A ( t )  = efat Ae-ial, H: ( t )  = efat H' t e  --is1 (4.12) 

is the Heisenberg representation for the operators A 
and HI. 

Taking (4.2) into account we can write (4.11) in the 
form * 

t 

j ( [ A  ( t ) ,  VQ (711) e--iPrfer dr. (4.13) = ( A )  f 2 
Q -m 

Introducing under the integral sign the function e(  t - T )  

and extending the limit of integration to T = 
the definitions (2.lb) and (3.10b) to rewrite (4.13) in 
the form 

we use 

A= (-4) + 2 e-iQl+@ 2n ( ( A  I VQ)) ;:\, (4.14) 
P 

where << A I VQ >>Eta is the Fourier component 
( for  'E=Q ) of the retarded Green function << A ( t  ); 
vQ(T)>>r. (11 = - 1). 

The change in the average value of an  operator when 
a periodic perturbation is switched on adiabatically can 
thus be expressed in terms of the Fourier components 
of the retarded Green functions which connect the per- 
turbation operator and the observed quantity. 

In the case of an instantaneous switching on of the 
interaction we substitute (4.3) into (4.11) and get 

m 

= ( A )  + 2 5 ( ( A  ( t ) ;  VQ ( ~ 1 ) ) ~ ~  e-iQrfer dr , 

i.e., the reaction of the system can also be expressed 
in te rms  of the retarded Green functions. Equations 
(4.13) and (4.14) are well known in the statistical me- 
chanics of irreversible processes, where the retarded 
Green functions are usually called the after-effect 
functions. 

is periodic in time and contains only one harmonic 
frequency w is of interest. Putting in that case 
Q = f w in (4.2), since 

(4.15) 
Q 10 

The particular case where the external perturbation 

HI = - cos UtFB, (4.16) 

where So, the amplitude of the periodic force, is a c 
number and where B is the operator part of the per- 

*Here and henceforth in this section, unlike in (2.1), the aver- 
aging is over a canonical ensemble, and the operators are in the 
Heisenberg representation with the Hamiltmian H and not with 
&?=H-pN.  
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turbation, we get from Eq. (4.14) 

X ( t )  = ( A )  - .Fce-ial+efn ( ( A  I B))Ecd- .Foeiat+etn. ( ( A  I B ) ) ~ L - ~  
(4.17) 

or,  taking into account that A( t )  is a real quantity 

x(t) = ( A )  -+ Re { x  (a) Foe-iat+el], 

where Re indicates the real part of the expression 
and x ( w  ) is the complex admittance, equal to 

x (0) = - 2n. ( ( A  I B ) ) E o .  

(4.18) 

(4.19) 

Equations (4.18) and (4.19) elucidate the physical 
meaning of the Fourier components of the Green func- 
tion << A( t )B( ,)Bret as being the complex admit- 
tance that describes the influence of the periodic per- 
turbation (4.16) on the average value of the quantity A. 

4.2  The Electrical Conductivity Tensor 

As an example we consider the connection between 
the electrical conductivity tensor and Green functions". 
Let there be switched on adiabatically an electrical 
field E( t ), uniform in space and changing periodically 
in time with a frequency w 

E ( t )  = E cos at. 

The corresponding perturbation operator is equal to 

H i  = - 2 e j  (Exj) cos ate&' (4.20) 

(where e j  is the charge of the j-th particle, and where 
the summation is over all particle coordinates xj ). 
Under the influence of the perturbation (4.20) there 
arises in the system an electrical current 

13 

;a ( t )  = j ( ( ; a  ( t ) ;  G ( T I ) )  d T ,  (4.21) 
--03 

where 

ja is the current density operator, i f  the volume of 
the'system is taken to be unity. Integrating by parts, 
we write Eq. (4.21) in the form 

(4.23) 

we get from this equation 

m ie ln ,ioT+eT 

uap(o) = -- n,o 'h + \ ( ( ; a  (0); is(?))) dz (4.25) 
-13 

is the electrical conductivity tensor, and n the number 
of electrons per  unit volume. The first term in (4.25) 
corresponds to the electrical conductivity of a system 
of free charges and is not connected with the interpar- 
ticle interaction. As w - w the second term decreases 
more strongly than the f i rs t  one lim, - ,Im wasp( w ) 
= - e2nsap/rn), and the system behaves as a collection 
of free charges. 

One can use (3.7) and integrate over T to rewrite 
Eq. (4.25) in a different, equivalent form 

-- u3 
W 

0 a 5 ( 0 ) =  ie*n - = 6 a p + r  e 8 - t  \ ( ; a ( O ) ; s ( t ) ) ~ - ' ~ ' d t .  (4.26) 
--P 

This is Nyquist's well-known theorem, 24 generalized by 
Callen and Welton' for the quantum mechanical case; 
it connects the electrical conductivity with the fluctu- 
ating currents. It is usually written in a somewhat dif- 
fe re nt form 'O 

are the symmetrized time correlation functions. Using 
Eq. (4.27) one can evaluate the electrical conductivity 
without constructing a transport equation. 25 

Equations (4.25) to (4.27) are noteworthy as they 
connect a characteristic of a non-equilibrium state, 
the electrical conductivity, with the correlation func- 
tion of the currents in the state of statistical equili- 
brium. KirkwoodZ6 was the first to obtain such a rela- 
tion for the coefficient of internal friction. They also 
occur for other transport coefficients, for instance, 
diffusion and thermal-diffusion coefficients, the mag- 
netic-susceptibility tensor, and so on. We shall not 
dwell on these problems, but refer the reader to the 
literature. '** 18*21-29 

irreversible processes, see especially references 10 
and 18 where the fluctuation dissipation theorem and 
dispersion relations for transport coefficients a r e  con- 
sidered in more detail. 

For applications of Green functions to the theory of 

5. PERFECT QUANTUM GASES 

As a simple illustration of the method, we consider 
the Green functions for perfect quantum gases. The 
Hamiltonian of a perfect gas of fermions ( o r  bosons ) 
is of the form 

where f = (k, o), (T is the spin index, k the momentum 
(for  a boson gas  (T = 0) ,  Tf = k2/2m - p,  p the chemical 



0 potential, while af and a; are operators satisfying the - 
GI (a+ i e )  - Cj (a- i e )  = - i (c  0 - q) J/  (0) 

Fermi-DiraC and Bose-Einstein statistics commuta- 
tion relations, and the 6 -function representation (3.27). and we have 

(5.11) 

- 'I 

( fo r  Fermi-Dirac statistics E = - 1, and for Bose- 
Einstein statistics E = + 1 ) .  The quantum mechanical 
equations of motion (2.14) for the operators are very 

We see that for  perfect gases the spectral intensity 
J( w ) has a 6 -function shape. We get for  3f( t - t') 

- iT f ( l  - 1 ' )  

6, ( t  - t ' )  = (a; (1 ' )  a, ( t ) )  = !I--.- . (5.12) simple 
da da * T, 

i - 1 = T a .  i L =  - ~ a +  
at I I '  at I 1 -  (5.3) e l  - 1 )  

We introduce the Green function (71 = E ) Putting t = t' in (5.12) we find the average occupation 
number 

- T f  
G, ( t  - 1') = ( (a/  ( 0 ;  a; ( t ' ) ) ) ,  (5.4) 

corresponding to the following choice inEqs. (2.lb and c) n, = (a ia I )  = {eF - q}-1. 

We determine the chemical potential p from the con- 

(5.13) 

n ( t )  = a/ ( t ) ,  B ( t ' )  = a; ( t ' ) ,  (5.5) dition 

and construct with it the equation of motion (2.15) 
dC 

i f d t  = 6 ( t  - 1 ' )  + TIC, .  (5.6) 

One can easily solve Eq. (5.6). 

functions 
Going over to the Fourier components of the Green 

W 

G, ( t  - t ' )  = j c, ( E )  c - i E ( l - l ' ) d E  

-0j 

and using the 6 -function representation 
W 

(5.7) 6 ( t  - 1 ' )  = -1 j e- iE( l - : ' )dE 
2r( 

-03 

we get 

T i  

(5.14) 

W e  note that we need not evaluate the partition function 
in order  to calculate fif. Instead we solve the equations 
for the Green function and use the spectral theorem 
(3.25). 

The example given here has a purely illustrative 
character; one need not apply Green function tech- 
niques to consider perfect gases. We only gave this 
example to show for a very simple case the general 
pattern of consideration, which is the same for other, 
no longer trivial examples. One can also evaluate the 
Green iunctions of a perfect gas directly, using the 
definitions (2.1) to (2.5), the commutation relations 
(5.2) for the operators, and the fact that for a perfect 

(5.8) gas 
The Green function Gf( E ) is thus equal to 

(5.9) 
1 1  G,(E)=r- -  IT E-TTt' 

One could still add to the solution (5.9) a singular 
part of the form 6 ( E-Tf)  with an arbitrary coefficient. 
The function obtained in that way would, however, not 
satisfy the analytical properties of the retarded ( o r  
advanced) Green function (see Sec. 3.2), so  that we 
must set the coefficient of the 6 function equal to zero; 
(5.9) gives thus the required solution. For the causal 
Green functions we must take into account the singular 
addition to the solution (5.9) in order that the Green 
functions possess the necessary analytical properties 
(see See. 3.3). It is thus clear from (5.9) that the Green 
functions have a pole at E = T f ;  the energy of the ele- 
mentary excitations E ( f ) = Tf corresponds thus to the 
Pole of the Green function. We find the spectral inten- 
sity J( w ) of the corresponding correlation function 

a ( t  - eiHlate- iHI = e- iT 
I 1- (5.15) 

a' (1) = e i H f a ;  e-iHI = eiT#la;. 

We then find for the Green functions 

and, using (3.15), we get for the corresponding Fourier 
com pone nt s 

co 

9, ( t -  t ' )  = (a; ( t ' )n ,  ( t ) )  = 1 J ,  (0) e-O(f-f')da (5.10) We note that the retarded and advanced Green functions 
for  a perfect gas are temperature-independent. -m 

by using Eq. (3.25) In the remainder of the present paper we shall only 
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deal with retarded and advanced Green functions (2.lb 
and c) without specifically mentioning this. 

6. APPLICATION TO THE THEORY OF 
SUPERCONDUCTIVITY 

It has been shown in references 30 to 32 that one 
can develop a theory of superconductivity starting from 
the Bardeen-Cooper-Schrieffer model Hamiltonian, in 
which the electron-phonon interaction is replaced by a 
direct electron-electron interaction, and in which one 
takes into account only the interactions of pairs of 
electrons with opposite momenta and spins. It was 
shown that this interaction was the basic one responsi- 
ble for the phenomenon of superconductivity. In ref- 
erence 31, where the theory of superconductivity was 
developed starting from Frohlich's exact Hamiltonian 
in which the emission and absorption of lattice phonons 
is taken into account explicitly, the possibility of re- 
placing the Hamiltonian by a model Hamiltonian was 
in particular put on a firm basis and the choice of its 
parameters was made more precise. In the present 
section we consider the application of retarded and ad- 
vanced Green functions to the theory of superconduc- 
tivity, based upon a model Hamiltonian of such a type. 
(Causal Green functions were applied to the theory of 
superconductivity in references 16, 34, and 35.) 

The consideration of the model Hamiltonian is of 

interest as one can get a solution which is asympto- 
tically exact as V - - (V/N = const. ) (see refer- 
ences 32, 63, and 65). One need therefore not make 
any approximations to decouple the chains of equations 
for the Green functions, for the decoupling turns out to 
be asymptotically exact. The solution of a model ex- 
ample can, among other things, serve to indicate pos- 
sible approximations when solving other examples, no 
longer of the model type. 

6.1. The Model Hamiltonian 

W e  shall start from a model Hamiltonian of the 
form 

f 
- & 2 J ( f ,  1') u j + + q ,  (6.1) 

1. I' 

where f = (k ,  u), - f = ( -k, - u), u is the spin index 
which takes on the two values +'/z and - y2, k is the 
momentum, Tf = k72m - p ,  p is the chemical poten- 
tial, af and a$ are operators satisfying the Fermi- 
Dirac statistics commutation relations (5.2), and 
J( f, f') is a real function with the properties 

In the case of Bardeen's model one must put 

o r  
1 J ( f ,  f ' ) = ; i - ( J ( k ,  / ~ ' )6U- , , t  - J ( k ,  - k')ba+,j. (6.4) 

When (6.3) holds, the Hamiltonian (6.1) is of the form 

We note an  interesting property of the model Hamil- 
tonian (6.1). If we choose as the zeroth-order Hamil- 
tonian the Hamiltonian 36 of non-interacting particles, 
as is done in the usual perturbation theory, the opera- 
tor Hint will give an asymptotical!y small  contribution 
to the energy of the system and to the other thermody- 
namic functions as V - - in all  orders  of the statis- 
tical perturbation theory. In first order  we get, for 
instance, 

which is finite as V - -. One sees easily that this 
property is conserved also in higher orders.  Since, 
however, the ratio of < H >  to V must tend to a finite 

~ 

limit when the limit V - - is taken, the operator Hint 
gives an asymptotically small contribution in all orders 
of the usual perturbation theory. It is, on the other 
hand, well known30J32 that the model interaction turns 
out to be important and gives a finite contribution to 
the thermodynamic functions. The Hamiltonian (6.1) is 
therefore an example of such an interaction which gives 
zero (as  V - - ) in each term of perturbation theory 
and leads to a finite effect fo r  the whole series. This 
is apparently connected with the fact that the effect of 
the terms in the perturbation theory series begins to 
show up starting with large n - no, where - 00 to- 
gether with N(N is the number of particles), In the 
usual considerations these terms are  assumed to be in- 
finitesimally small and are not taken into account. A 
similar situation occurs in the usual condensation 
theory where it is necessary to take into account groups 
of large numbers of molecules.33 

6.2. The Application of Green Functions 

W e  consider now the application of retarded and 
advanced Green functions to the Hamiltonian (6.1). We 
construct first the quantum mechanical equations of 
motion (2.15) for the operators af and a? 
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W e  introduce the Green function 

c, ( t  - t ' )  = ((a, ( t ) ;  a; (t") (q = - 1) (6.7) 

a d  write down for  it the equation of motion (2.17) 

dCr i - s a ( t - t ' )  t T , G ,  
d t  

(6.8) I 
27 z J ( f ,  j ' ) ( ( a L f  a-!*, a; ( t ' ) ) )  

1' 

(for the sake of brevity we have omitted the argument 
t of the operators). The equation for Gf contains also 
the double-time Green function rff 

rjt*(t - t ' ) = ( ( n _ l ( t ) n - / , ( t ) a , ~ ( t ) ;  a i ( t ' ) ) ) .  (6.9) 

We construct for this function, too, an  equation of mo- 
tion 

d3 = 6 ( t  - t')n-,(a,-,f - a,+,r) ,- ( 2 ~ ~ ~  - T,) r,,. 
a t  

- + >= J ( f ,  g) ((a;a:,a-,4,4'; a; (0) 
9 

1 
v - - 1  
1 

-- Y J ( j ' ,  ~ ) ( ( l - f l - , , - f l , , ) ~ ~ / ~ - ~ ~ ~ ;  ~ ; ( t ' ) ) )  
g 

(6.10) - 2 w, g) rfB (hfr + +,+ 
9 

The Green function (6.9) corresponds to the following 
choice in (2 . lb and c) 

A = u , L ~ u , - ~ ~ u / * ,  B = a;. (6.11) 

We note that the quantity rfft occurs in Eq. (6.8) 
for Gf in the sum over ff with a factor V' . We can 
thus neglect with asymptotical exactness in Eq. (6.10) 
for rfft the te rms  with 6f+ft and 6f-p. For the same 
reason the average of the product of the operators 
np and 

1 7 2 J ( f ' ,  g)a:/a-gQgaj 

in the second sum in Eq. (6.10) can be replaced, also 
asymptotically exactly, by the product of the averages, 
taking into consideration that the average values of 
these operators are macroscopic quantities which are 
finite as V - a, We can thus put* 

B 

Ylhe fact that the solution corresponding to such a decoupling 
is the same a s  the Bardeen-Cooper-Schrieffer solution'0 (see next 
subsection) shows that this decoupling is, indeed, asymptotically 
exact as  V -. m. since the asymptotic exactness of the latter was 
Proved in reference 32 by perturbation theory and in references 63 
a d  65 without perturbation theory. In references 63 and 65 it was 
also shown that one can satisfy the complete chain of equations for 

Green functions which are constructed on the basis of the model 
Hamil tonian, 

Repeating these considerations also for the first sum 
in Eq. (6.10) we can write Eqs. (6.8) and (6.10) in the 
form 

Changing to the Fourier components (3.10) of the Green 
functions 

i (6.13) 

m 

G, ( t -  t ' ) =  1 C,(E)e-iE(t-l ')dE, 
--m 

i m 

r,,, ( t  - t ') = I',,. ( E )  e-iE(f-t'j dE 5 
-OD 

(we use the same notation for the Green functions and 
for  their  Fourier components) we can write the set of 
equations for  Gf( E ) and rut( E ) in a form which does 
no longer contain time derivatives 

W e  obtain thus a set of integral equations for the func- 
tions Gf( E ) and r,y ( E  ). One notes easily that the 
solution of Eq. (6.14) can be found in the form 

Indeed, we get for  cf and rf the equations (compare 
reference 34) 

where we put, moreover, 
1-2& 

At' 
2T/<  + - Ly = o  . (6.17) 

and introduce the notation 
1 (6.18) L,= -72 J ( f 8  dA,. 

U 

Solving the set (6.16) we get ' 

The poles of the Green functions (6.19) give for the 
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spectrum of elementary excitations the expression3o 

0, = V T W .  (6.20) 

U s i n g  (6.20) one can conveniently write the Green func- 
tions in the form 

One can easily evaluate the spectral intensities of the 
time correlation functions If(  w ) 

m 

(a; ( t i )  at ( t ) )  = 'j Z, (0) e-* (1-f') do. (6.22) 
-m 

W e  can find the function If ( w  ) by using Eq. (3.25) 
which in our case ( 7  = - 1 )  i s  of the form 

0 

G , ( o + i ~ ) - G ~ ( ~ - i i e ) =  -i(eT + l ) Z f ( o ) ,  

and using the 6 -function representation (3.27); the re- 
sult is 
1, ( , )=T( l+$)! -k .?f~+~( l  1 -3)- (6.23) 

O t  01 Of 
-T -_ 

1 + c  1+e 

W e  get from Eq. (6.22), putting t = t' in  it, for  the 
average occupation number iif 

- 1  n =z{1-3 tanh$}  
Of 

/ (6.24) 

Taking (6.15), (3.7a), (3.25), and (3.27) into account we 
get for  the time correlation function the spectral ex- 
pansion 
(n; ( t ' )  U'f ( t )  L/* ( t )  a/' ( t ) )  = B p 4 ,  ( t  - t ' )  

= .Af, (' 7f (w) e-io ( 1 - 1 ' )  do, (6.25) 
-m 

where the spectral intensity yf ( w  ) is equal to 

E E 
l + e  l + e  

Putting t = t' into Eq. (6.25) we find the quantity Af 

L A / =  7 ~ ; ( o ) d o =  -1 tanh 2. 20 (6.27) 
201 

-W 

One checks easily that Eqs. (6.27) and (6.24) satisfy 
also Eq. (6.17) and the assumptions made turn thus out 
to be valid. We get from (6.27) and (6.18) for the quan- 
tity Lf which plays the role of the gap in the spectrum 
of elementary excitations the equation 

(6.28) L f = F z J ( f , d q t a n h  1 L, $. 0 

B 

Equation (6.28) has a non-trivial solution Lf f 0 at 
sufficiently low temperatures 0 for a positive definite 
kernel J ( k ,  k' ) [ s e e  (6 .3)]  which corresponds to the 
prevailing of the attraction between electrons with 
opposite momenta and spins, which arises from the 
exchange of phonons, over the Coulomb repulsion. 
(For a study of the influence of the Coulomb interac- 
tion see reference 37.) 

See reference 30 for the solution of Eq. (6.28) for  
the case where the kernel of the integral equation fac- 
torizes and reference 36 for more general assump- 
tions about the kernel (see Sec. 6.4). 

We can use (6.15) to get for the average energy 

or,  using (6.27) and (6.24) 

I L L 0 
-zt; 2 J ( / .  f')'tanhW'--fi_tanh'. *O/ 213 2 9 ,  28 

f .  1' 

(6 .30)  

Summing over f' in the second term of Eq. (6.30) and 
taking (6.28) into account we get finally 

At zero temperature, the state with Lf f 0 corresponds 
to a lower value of the energy, i.e., it is energetically 
more advantageous than the state with Lf = 0 [ the 
trivial solution of Eq. (6.31)]. We shall verify in the 
following (Sec. 6.5)  that the trivial solution is impossi- 
ble a t  temperatures below critical. 

Using Eqs. (6.26) and (6.27), we find for the time 
correlation functions the expressions 

-io ( 1 - 1 ' )  1 / 

01 O f /  -0 ' -t 
;a; ( t ' ) a ,  ( t ) )  = T (  1 + n)e 

l - e F  l + e  E 

(6 .33)  

The correlation function (6.33) vanishes for a perfect 
gas. Correlations of this kind which are typical for 
superconductivity are connected with the interaction. 
The time correlation functions (6.32) and (6.33) oscil- 
late as t - t' - - as in the case of the perfect gas. 
If one takes into account, however, the dropped asymp- 
totically small terms, there appears in higher orders 
in the correlation functions an asymptotically small 
damping which tends to zero as V - 00 (V/N = const ). 

6.3. The Canonical Transformation Method 

It is of some interest to compare for this model ex- 
ample the Green function method given here  and N. N. 
Bogoluyubov's method of the canonical u,v transforma- 
tion, which was applied to problem under discussion in 
a paper by N. N. Bogolyubov, Yu. A. Tserkovnikov, and 
the present author. 

Following the method of that paper, we introduce 
some ordinary functions Af and write the Hamiltonian 
(6.1) in the form 

<V = U f H ,  + HI, (6.34) 

where 
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c, = L,, A, =A, .  E ,  = 0,. (6.45) I! = 2T 1 2 J ( f ,  1') -41A/,, (6.34a) 
I . / *  

1 Ho= 2 H,= 2 { T,a;al+ ~ C , ( a i a ? ~ + a , ~ , ) )  (6.34b) 
I I 

( 6 . 3 4 ~ )  

B,  = a-,a, - A ,  (6.34d) 

1 HI = - 2 J ( f ,  f ' )  BI'BY, 
f. 1' 

and where we have introduced the notation 

(6.35) I c, = - - Y J ( f ,  1') A) , .  v y  
The operator Ho is quadratic in the operators af and 
a;, and it can therefore be diagonalized by a canonical 
transformation 

a, = u p ,  + u,a-i, (6.36) 

uf + u; = 1, '1, = u-,' u ,  = - ir -1 (6.37) 

(uf and vf real). 
We have then 

(6.38) c 
2 T/U/"/ + -5-  (u; - u j )  = 0, 

whence we get, using (6.37), 

W e  note that the operators Hf, Bf, and Bf commute 
with one another for different f .  

We choose Af from the condition 

(8,) = 0, (6.42) 

where the averaging is over a grand canonical ensem- 
ble with Hamiltonian Ho. (We retain for such an aver- 
age the earlier notation <. . . > .) 

W e  have then 

(6.43) 

and the contribution from the operator Hi becomes 
negligibly small as V - in comparison with the 
contributions from U + Ho (see reference 32 for  de- 
tails). 

equation 
Using (6.35), (6.43), and (6.42) we get for Cf the 

28 e,, 
f' 

(6.44) 

There is thus complete agreement between the method 
of the preceding subsection and that of the canonical 
transformation, and they lead to the same solutions. 
We get for the thermodynamic potential 

Jh 
-28 2 In (1 + e T } ,  (6.46) 

k 

where we have replaced f by k since here all quanti- 
ties are spin-independent, and using (6.37) we have 

l a- - 
C,=(-I) 2 c,. 

One notices easiIy that the thermodynamic potdntial 
(6.46) is a minimum in the variables uf and vf, as 
should be the case for  the exact solution. In calculat- 
ing the entropy we need therefore only take into account 
the explicit dependence of Q on the temperature 8, as 
terms that correspond to the temperature-dependence 
of uf and vf automatically drop out. We get thus an 
expression for the entropy, which is formally the same 
as the entropy of a perfect gas of elementary excita- 
tions 

a R  1 S= --= ae - 2 ~ ( v k l n v , + ( l - v k ) l n ( l - v k ) ) .  (6.47) 

Such a simple formula occurs only for the distribution 
function of the elementary excitations vk but not for 
the real  momentum distribution function (6.24). 

The method of the canonical u. v transformation 
allowed us thus to evaluate asyn:;;:otically exactly the 
thermodynamic potential and the entropy of the sys- 
tem. The Green function method gives the average 
energy from which one can afterwards reduce also the 
other thermodynamic functions. 

We note one interesting fact. It follows from Eq. 
(6.43) that 

k 

(a+* a,) (6.48) 

is a finite quantity. On the other hand, if we averaged 
over an ensemble, not with Ho but with the total Ham- 
iltonian X ,  the analogous quantity would be equal to 
zero. Indeed, the operator of the total number of par- 
ticles 

N = a;a, 
f 

commutes with X, i.e., it is an integral of motion. Its 
eigenvalues N = 0, 1, 2, . . . are thus quantum numbers 
which number the eigenvalues of X. Writing (6.48) in 
explicit form 

Ea, N 
(a-,al)  = Q-' 2 e- 7 C:, ~ a - , a ~ C ~ ,  N, (6.49) 

a. N 

Comparing (6.20), (6.27), and (6.28) with (6.40), (6.43), 
and (6.44) we satisfy ourselves that 

where Ea, N and C,, N are the eigenvalues and eigen- 
functions of the Hamiltonian X corresponding to a 
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fixed N, we verify that this quantity is, indeed, equal 
to zero, since the operator a-faf has no diagonal ele- 
ments in the representation with fixed N, 

C:, NU_,U,C,N = 0. 

To prove this it is essential that N be an exact integral 
of motion. For the operator Ho [see (6.34b)l the par- 
ticle number operator N is no longer an  exact integral 
of motion and the quantity (6.48) does therefore not 
vanish. 

6.4. The Solution of the Equations 

We shall follow reference 36 and give the solution 
of the integral equation (6.44). We rewrite Eq. (6.44) 
in integral form 

where 

We choose the constant J > 0 such that I (0 ,  0 ) = 1, k, 
is the Fermi momentum, and w is a characteristic 
energy (of the order of magnitude of the energy corre- 
sponding to the Debye limit of the phonon energies ) for  
which the kernel J ( 5 ,  5 ' )  is essentially different from 
zero. We assume that w is appreciably less than the 
Fermi energy and we remove from under the inte ral 
sign the slowly changing function k ( 5 )  = JL--g- 2m(p + 5 )  
a t  the point 5 = 0 [ k ( O )  = k,]. 

We introduce a new unknown function cp(x) 
(x  = 5 / w )  

c (2) = ccp (,x), 'p (0) = 1, c = c (0) (6.51) 

and write Eq. (6.50) in the form 
m 

When solving the non-linear integral equation (6.52) we 
use the fact that it has a logarithmic singularity as 
x' - 0, ol- 0, and p - 0, and these parameters can 
be assumed to be very small ( a  << 1, p << 1). For 
x = 0 we get from (6.52) a transcendental equation for 
(Y and p 

m 

(6.53) 

To solve it we must still know the function cp(x). To 
find an approximate equation for cp(x) with (Y << 1 and 
p << 1, we subtract from Eq. (6.52) Eq. (6.53) multi- 
plied by I (x, 0 ), and since the resultant equation 
should no longer have a singularity, we can let a and 

p tend to zero. We then obtain for cp(x) the inhomo- 
geneous Fredholm integral equation 

co 
dr' 

cp (5) = ~ ( s ,  0)  + e \ (I (5, 5 ' )  -1 (J ,  0) I (0, x')j cp (2') , 
b (6.54) 

which no longer contains a singularity and is independ- 
ent of the parameters Q and p. One easily obtains a 
solution of Eq. (6.53) as a power series in p by itera- 
tion. One can thus consider 
tion. If the kernel factorizes 

cp ( x )  to be a known func- 

I (z, 2') = I  (:x, 0)  I (d, 0) (6.55) 

we get as the exact solution of Eq. (6.54) 

cp (5) = I (2, 0) .  (6.56) 

In the particular case of the Bardeen-Cooper-Schrieffer 
model interaction3' we have 

0 0 pif  -- c1 < x . < - ,  (6.57) I (J, 0) = L P 
0 outside this interval. 

We can simplify (6.53) by using the fact that a and 
p a r e  small and that there is a logarithmic singularity. 
To do this we integrate by parts ard put Q = /3 = 0 i n  
the terms which do not contain a singularity (when tak- 
ing the limit we assume p / a  = a = const ). We get 
then36 

- l n a t a n h a + l n a +  l n ( z i - ~ ~ z 2 - ~ a ~ ) c o S h - 2 ~ d x  f 1 
v 

- _ -  

m + 5 I n  - 3 ~ ~  d ( I  (z, 0) cp (.)I d r .  

0 

(6.58) 

Equation (6.58) determines p as a function of Q ,  

i.e., the temperature dependence of the energy gap C. 
At zero temperature Q = 0 and we get N. N. Bogolyu- 
bov's solution3' 

where 

(6.59) 

(6.60) 

qo is the maximum Debye momentum, 
w =  x w  qlq=ko' and g is a coupling constant [see (8.2) below]. At a 
temperature equal to the critical temperature, e = O,, 
the gap in the spectrum of elementary excitations tends 
to zero ( p  = 0 o r  (Y = 0 )  and we find from Eq. (6.58) 
the following expression for eo3' 

a ,=?=exp{  -+- 'j Inzcosh-21:d.r: 
m 

U 
m 

I1 - 5 1 n z [ I  (0, r )  cp ( x ) ]  ds ' l 
0 

(6.61) 

The ratio of the critical temperature to the magnitude 



of the gap a t  zero temperature and also the relative 
jump in the heat capacity are independent of the func- 
tion cp and are the same as the expressions obtained 
in reference 30 with the simplified interaction (6.55). 
These properties a r e  thus not connected with the de- 
a i l e d  form of the interaction, but only with the singu- 

Changing the sum to  an  integral and introducing 
dimensionless variables x = €,/w and a new function 
f ( X )  

3 (2) = .F (0) / ( 5 )  ( j ( 0 )  = I), (6.69) 

we get for  it the equation 
larity of the integral equations. m 

(6.70) 2’ 22’ / ( z ) = e  1 Z(z, z ’ ) t a n h a m f ( d ) & ’ ,  
6.5. Instability of the Trivial Solution 0 

where y = E/2w is a dimensionless parameter which 
is assumed to be small  ( y  << 1); the res t  of the nota- 
tion is the same as in (6.50) to (6.52). 

equation with singularities of a logarithmic character 
as 01 - 0 and y - 0. 

One can wri te  the equation for  f ( x )  in the form of 
an  inhomogeneous Fredholm integral equation by sep- 

The non-trivial solution Af f 0 and Cf f 0 cor re-  
sponds for 0 < eo to a lower value of the thermody- 
mmic  potential (6.46), i.e., is thermodynamically more  
stable than the trivial solution Af = 0. This, however, 
is not the whole story. We shall show that below the 
critical temperature the tr ivial  solution Af = 0 is im- 
possible.* Indeed, assuming that 

Equation (6.70) is a homogeneous Fredholm integral 

(a; a:n u-, a / )  = 0 or  A, = 0,  arating from it the terms with singularities and, using 
the fact that 01 and y are small, going to the limit 
o! - 0, y - 0 in the terms which do not contain singu- 
lari t ies.  [we used the same procedure earlier on with 

we get, retaining in the second of Eqs. (6.14) a lso the 
inhomogeneous term, - 
( E  - 27‘1, + T,)  r,r = - ni (6,-,* - 6 j + j , )  Eq. (6.52).] We get in this way 

2n rn 

1 -2n,, 1 -- I .  2 J ( 1 ’ 9  d r,,, -r/ 2 J ( 1 ’ 7  6)  r,o @,+/* + 6 / 4 1 .  
9 R (6.62) 

We find the pole of the Green function rff’ from the 
condition that the homogeneous par t  of Eq. (6.62) should 
tend to zero, i.e., 

- 
1--2n,. 

( E  - 3 ~ ~ -  + T,)  r,,$ + 2 ~ ( 1 ’ ~  9) r,,, = 0 ,  (6.63) 
D 

where we have dropped asymptotically small terms. 
The index f in Eq. (6.63) can be chosen freely, and if 
we choose it so that Tf = 0 and introduce the notation 

a,, = r//,, (6.64) 

we get for  @f the equation 
- 

1 - 2nj 
(E--22T, )@,= -- v z J ( 1 9  /‘)a/,. (6.65) 

1‘ 

If we use the method used in reference 36, we can solve 
the integral Eq. (6.65). 

Introducing the notation 

(6.66) 1 .p / = -- y 2 JU? 1’) a,,, 
1’ 

we can write Eq. (6.65) in the form 

( E  - 2T,) a, = (1 - 2.f) b,. 

Substituting into Eq. (6.66) Cpf f rom Eq. (6.67) we get 

(6.67) 

m 
k’ tanh - 

Ti&.-- 
(6.68) 1 28 yk = 257 2 J ( k ,  k‘) - F~v, E 

2 
k‘ 

where we have changed f = (k, u ) to k. 
*Considerations of the impossibility of two solutions (a trivial 

one and a non-trivial one) at 8 < 8, were given by G. Went~el,’~ 
who showed that the thermodynamic potential must by definition be 
a single-valued function. 

Comparing (6.71) with (6.54) we see that 

I ( 4  = cp (2). (6.72) 

We find the parameter  y2 as a function of o! from the 
transcendental equation 

m 

F o r  instance, f o r  01 = 0, we integrate (6.70) by par ts  
and get 

m 
d - - l n ( - y Z )  -- \ l n ( x 2 - y y 2 ) d z { ~ ( z ) I ( 0 ,  z ) ) d x .  (6.74) 2 _ -  

e 
U 

Taking in the second integral the limit y - 0 we get 
m - 

E ’  d 
y 2 =  (r) 0 = -eexp{ l n z z { v ( z ) I ( O ,  z)}d.r= 

(6.75) 

The denominator of the Green function tends to zero in 
the points E = f iC( 0) .  

Starting from the equation Af = 0. i.e., from the 
existence of the tr ivial  solution, we have thus found 
that the Green function has a singularity in the com- 
plex plane outside the real axis; since, however, it 
must  be analytic everywhere outside the real axis, 
such solutions cannot occur, and hence Af f 0. At the 
critical temperature the complex root vanishes and we 
have the solution E = 0. Indeed, putting y = 0 in Eq. 
(6.73) we get Eq. (6.53) for /3 = 0, which defines the 
critical temperature. 

The application of Green functions thus enabled us, 
without any other considerations, to choose from the 
two solutions the only one which is physically acceptable. 
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7. APPLICATION TO THE THEORY OF The operators bg and % satisfy the equations of 
FERROMAGNETLSM motion 

db9 N. N: .Bogolyubov and S. V. Tyablikov,” and also i x= [ ~ P B  i 2J(O)]b ,  + 2 2 J  (g- p )  6, 
S. V. T y a b l i k ~ v , ~ ~  have applied advanced and retarded 
Green functions to the thermodynamics of ferromag- 
netics. W e  shall follow their papers. 

P 

+ 2 4J (g - P) (nubp - b,np), 
P 

According to the Heisenberg model, a ferromagne- 
tic crystal can be described by a Hamiltonian expressed 

dn 
i 2 dt = - 2 2 J ( g  - p ) (  bib, - bib,). (7 .8)  

in terms of spin operators 
1 

%?= - pgH 2 Sf-.z J(~l-j2)s~ls;*, (7.1) 
f i I / N  

where Sf is the a component of the spin of an elec- 
tron situated at the lattice site f, J (fi - fi) is the ex- 
change integral which we shall assume to be positive, 
H is the external magnetic field which is parallel to 
the z-axis, and pB is the Bohr magneton. The summa- 
tion is over lattice si tes with different f. so  that we 
can put J( 0 )  = 0. W e  shall assume, moreover, that 
there is one electron on each lattice site. 

tors  to Pauli operators 
Changing in the Hamiltonian (7.1) from spin opera- 

I S; = b j  -+ b j ,  

S;! = i ( b j  - b j ) ,  

.Pi = 1 - ?bib,, 

which satisfy the commutation relations 

b,bj + bib,= 1, b;= (b ; )2=  0, 
b,b; -bib,  = 0, (7 .3)  ‘ if j + g , .  b,b, - b,b, = b j b i  - b i b j  = 0 

which a re  easily checked by direct substitution. The 
commutation relations for the Pauli operators are of 
the Fermi type for  the same lattice si tes and of the 
Bose type for  different sites. The Hamiltonian (7.1) 
assumes upon transformation the form 

- 2 2J (11 - tJ  bjlb/? - 2 2J (1, - 1 2 )  rr/lli/l, (7.4) 
f l f Z  I If2 

where J ( 0 )  = Z f J ( f ) ,  and N the number of lattice 
si tes.  The operator nf, 

1 1 ,  = b i b ,  (7.5) 

is the number of electrons with “left hand” spins at 
the site f. The average number of “left hand” spins 
at any lattice site 

- 
n = (n,) (7 .6)  

is independent of f because of the translational sym- 
metry and the equivalence of all lattice sites. More- 
over, it follows from the equations of motion for nf 
that 

(7.7) 

G. f - i --(I df - “ n ) d ( t - t ’ ) + [ 2 p ~ ~ ~ t + ~ ( o ) ] C , , ,  
A 

P P 

In the following we shall restr ic t  ourselves to the first- 
order  approximation and we shall decouple the chain 
of equations for the Green functions, taking 

cup,, ( 1  - t ‘ )  = ((n, ( 1 )  b(4; 6; (“1)) = 01,) ( (b , ,  ( t ) ;  4 ( t ‘ ) ) )  

(7.11) - 
I nG,, ( t  - t ‘ ) .  

In that case Eq. (7.10) is of the form 

- - 
+ 2 (I - 211) 2.l ( g  - p )  G p ,  I = (1 - 3 / ~ )  6 ( t  - t ’ )  6,, (7.12) 

I) 

and it  no longer contains higher Green functions. 
The method of decoupling (7.11) corresponds to the 

method of approximate second quantization3$, improved 
thermodynamically for the higher temperature region. 
Indeed, in the method of reference 39 the Pauli opera- 
tors  were assumed to be approximately Bose-operators 
and the last term in the Hamiltonian (7.4) was neglected, 
which corresponds to the low temperature region, well 
below the Curie temperature. In that approximation 
one must put in Eq. (7.12) T i  = 0. When the tempera- 
ture rises,  the role of the terms containing a factor 
ii increases and one must by then take them into ac- 
count. 

Green functions 
W e  change now to the Fourier components of the 

m 

G,, , ( t )  = ‘j G,,, , ( E )  c-iEldE (7.13) 
--9 

and write Eq. (7.12) in the form 

- z( l -2 ; )  2 / ( g - p ) G P . / .  (7.14) 

One can solve Eq. (7.14) by the usual method applied 
in the theory of ferromagnetism and based upon the 



translational symmetry of the lattice. Taking into ac- 
count that then Gg,f depends only on the difference of 
the lattice vectors g-f and is a periodic function we 
change to the Fourier components in these variables 

Gg, ,(Ej=T 2 ei(g--l .q)Cq(E) ( g  -wave vector). 

The Kronecker symbol 6g,f can also be written in the 
form 

1 (7.15) 
9 

(7.16) 
9 

Substituting (7.15) and (7.16) into Eq. (7.14) we get 

(7.17) 1 1-2; 
2n L-.L.$’ G,, (E)  = - - 

where 

(7.19) 
f 

Using (3.25) and (3.27) for the spectral intensity we 
find 

1 (7.20) I 
--OD 

Putting here t’ = t, f = g, and changing from a sum 

over q to an  integral, we get for fl the transcendental 
equationlg 

where V = V/N is the volume of the elementary cell. 
Equation (7.21) determines the relative magnetiza- 

tion u 

Introducing the dimensionless variables 

(7.22) 

h =- PBH e i ( q ) = - -  3 ( 9 )  (7.23) 
J ( 0 ) ’  T=- 3 (0) ’ J (0) 

( h  is the dimensionless magnetic field, T the dimen- 
sionless temperature, and i(q) the dimensionless ex- 
change integral ) we can write (7.21) in the form 

(7.24) 

In the first approximation considered here, the 
Green function has  a pole on the real axis for E = Eq ; 
hence, Eq is the energy of the elementary excitation 
of the spin wave, which depends through u on the tem- 
perature, in contradistinction to the usual spin wave 
theory. In higher orders the pole disappears and there 
is damping. We shall consider the role of damping in 
Sec. 8 for  the example of electrons interacting with the 
lattice. 

Equation (7.24) is very interesting because it gives 
an interpolation formula for the magnetization ~7 for a 
wide range of temperatures for the case under consid- 
eration- of a positive exchange integral. For negative 
values of the exchange integral the solution is unstable 
in sufficiently weak fields [the right hand side of (7.21) 
becomes negative, whereas fi > 0). 

Solving Eq. (7.24)38 we get for the relative magneti- 
zation u the formula 

i 
1 -.x AjT? T < T, (7.25a) 

1 3 3  

(7.25b) 
Tc Tc Tc 

u =  I , /+(l-z) { l + & $ ( 1 - ~ ) + 5 . 1 0 - 4 [ ~ ( 1 - ~ ) ~ 3 } ,  T ~ T ,  ( K , - T < ~ ) ,  h=0 ,  

(7 .25~)  

where TC = 8c/J(O) = l /c is the dimensionless Curie 
temperature. For a simple cubic lattice c = 1.516, 
v is the number of nearest neighbors in the lattice; 
Af a function of h/T. 

A,= ~ 

It follows from the transcendental Eq. (7.24) and Eqs. 
(7.25a, b, and c) that at temperatures below the Curie 
temperature Oc = J( O)/c there occurs spontaneous 
magnetization, i.e.. u f 0 for H = 0, and the system 
is in a ferromagnetic state. At the Curie temperature, 3 - 

2v I the spontaneous magnetization vanishes. For 8 > BC 
(8na)3’’ ‘’ ($)‘ \ 4% ’ = O *  ’ O; # ” I the system goes over into a paramagnetic state. Equa- 

co 

n= 1 

1 tion (7.24) and Eqs. (7.25a, b, and c) describe this 
transition completely. W e  get as limiting cases all 
well-known results from the quantum theory of ferro- 

a = -  2 I”(1); 63 (0) , z,, = 2 n-pexp ( --$I. 
(7.26) magnetism. 
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q 

. dal;, 

4 

- 1 7  = Tk[J/& f 3 A, ,0;+0.  a (bq T bLq)v 
P 

i-=o d f  b q i 2 A&-,. a flha. 

db; - 
- ~,b,‘ f z AQQi+;+,,a ( 1 1 ~ ~ .  

k .  a 

- i 

Indeed, for e 5 Bc we get from (7.25a) Bloch’s spin 
wave theory; near the Curie temperature 8 5 ec we get 
from (7.25b) the results of the molecular field theory, 
and for e > ec from (7 .25~)  a theory of paramagnetism 
which is nearly the same as Opechowski’s results, ob- 
tained by means of the thermodynamic perturbation 
theory (a  difference occurs in the third term ). 

The authors of references 19 and 38 thus were able 
to improve substantially the quantum theory of ferro- 
magnetism and to construct an equation for the magneti- 
zation, (7.24), which is suitable for all temperature 
ranges. (See references 41 and 42 for the f i rs t  attempts 
in this direction.) Naturally, this equation has partly an 
interpolation character, but the agreement of the main 
terms at temperatures appreciably below the Curie 
temperature, in the neighborhood of the Curie temper- 
ature, and at temperatures appreciably higher than the 
Curie temperature with the well-known results of the 
spin-wave theory, the molecular-field theory, and the 
regularized perturbation theory shows that this inter- 
polation is sufficiently flexible. In the very interesting 
paper by D y ~ o n ~ ~  on the theory of ferromagnetism he 
obtained A, = A, = 0 which is different from (7.26). 
This shows apparently that one must take higher order  
Green functions into account to make the results more 
exact. 

One can obtain the results of references 19 and 38 
by establishing a chain of equations for Green functions 
which are built up directly from the spin operators.44 
The method of references 19 and 38 can also be applied 
to improve the quantum theory of antiferromagnetisma4 
and the theory of magnetic a n i s o t r ~ p y . ~ ~  

} (8.3) 

8. ELE CTRON-LATTIC E INTERACTION 

8.1. Electron-Lattice Interaction in a Metal 
In the present section we shall consider a system of 

electrons interacting with the lattice phonons. We shall 
consider metals in the normal state, and following ref- 
erence 19 restrict ourselves to the simplest approxi- 
mation, which is insufficient to take effects such as 
superconductivity into account. This example, however, 
which has a methodological character, enables us  to 
elucidate a number of important properties of a sys- 
tem of interacting particles, which will occur also in 
other systems, namely: the occurrence of damping and 
i ts  influence on the distribution functions. A system of 
electrons interacting with phonons for the non-super- 
conducting state at zero temperatures was considered 
by a Green function method in references 46 and 47, 
while in the last paper the role of damping was studied. 
(See references 31 and 64 for a theory of superconduc- 
tivity based upon the Frchlich Hamiltonian.) In the 
present section we shall follow reference 19, amplify- 
ing it by considering the phonon Green functions. 

The system of electrons in a lattice is described by 
the Frohlich Hamiltonian 

where Tk = kY2m - p ,  p is the chemical potential, 
wq the energy of a phonon, a h ,  a b ,  b& and bq the 
creation and annihilation operators of the electrons 
and phonons, respectively, and the function Aq de- 
scr ibes  the coupling of the electrons to the phonon 
field 

1 

and we construct their equations of motion 

P 1 

i . dC, 
1 7  = 6 ( t -  f’) -k O,lGq 2 A ,  ((0i-q. &ka; b,‘ ( t ‘ ) ) ) .  

k .  a 

(8.5) 
We see from Eqs. (8.5) that it is convenient to intro- 
duce mixed type Green functions, containing both 
Fermi-Dirac and Bose-Einstein operators, 

r k - y .  q ,  k ( t  - t ’ )  = ( ( a k - q .  a ( t )  b, ( t ) ;  a!& ( t ‘ ) ) )  
ri-q. q. k ( t  - t ‘ )  = ( ( a h - q ,  0 ( t )  b:q ( t ) ;  t& ( t ‘ ) ) )  

c k - y .  k .  ( t  - t ’ )  = ( ( 0 i - q .  a ( t )  aka ( t ) ;  b,’ ( t ’ ) ) )  

(q  = - I), 
(’1 i= 1). 1 

(8.6) 

W e  get the following set of exact equations for the 
Green functions (8.4) and (8.6) 

i 3 d l  = 6 ( t -  t’) + 7 ’ k G k t  2 A,  (r,+“, v ,  + r;-,,,,k), (8.7a) 

( 8 . 7 ~ )  



drk-q, 9 .  h i dt  = ( T k - q  -aq)ri-Q, 4,  k 

i- 2 Aq, ( ( a k - q - q , .  a ( O Q ,  f b:ql) bTq;  ak'a ( t ' ) ) )  

- 2 A ,  ((ah-*. a, ai;,-p. a,aklal~ flia ( t ' ) ) ) ~  

4 1  

(8.7d) 
k l O l  

dCk-q. k .  = ( T k  - T k  -J Gk-. h ,  d t  

-k 2 Aq, ( ( d - q ,  a ~ ~ h - q , ,  a (b;, $- bL41); b,' (1'))) 
9 1  

- 2 Aql ((O;-q+q,. 0 (hl f b'q,) aka; bp' ( 1 ' ) ) ) .  (8.7e) 
PI 

(The last three equations do not contain an inhomoge- 
neous part, as q # 0.) 

Apart from the introduced Green functions (8.4) and 
(8.6), Eqs. (8.7) contain also higher order Green func- 
tions, for which we should in turn construct equations 
of motion and continue the process further. We note 

that the energy can be expressed in the Green functions 
(8.4) and (8.6) only. If we decouple the chain of equa- 
tions for  the Green functions, (8.7), making some kind 
of approximation for the higher order Green functions, 
the inaccuracy introduced then will be the smaller the 
higher the order of the Green functions for which the 
decoupling is performed. It is, for instance, well known 
that in classical statistics a rather simple approxima- 
tion for the tertiary correlation function describes ap- 
proximately some properties of the liquid ~ t a t e . ' ~ ~ ~ ~  
For  a system with a direct interaction the simplest way 
to decouple the chain, where the second correlation 
function is expressed in terms of the first one, leads 
to the Hartree-Fock method, and the corresponding ap- 
proximation for the triple Green function leads to the 
generalized Fock method.'' 

We carry out the simplest interpolation decoupling 
of the higher Green functions occurring in Eqs. (8.7) 
by pairing off, where possible, operators referring to 
the same time 

The approximation (8.8) is fairly coarse, and, in 
particular, it is insufficient to take into account the 
correlation between electrons which leads to the super- 
conducting state30131 and which is important at low 
temperatures. * 

One might, without decoupling the Green functions 
(8.8), construct for them equations of motion and make 
an approximate decoupling for the higher order Green 
functions occurring in these equations. We shall not do 
that and we shall restrict ourselves to the simplest 
approximation (8.8) a s  it is sufficiently simple and re- 
flects a number of interesting properties of a system 
of interacting particles. Using (8.8) we get an approxi- 
mate set of equations for the Green functions 

i = ( T ~  - T ~ ~ )  G ~ - , ,  *, k t A,  (nk-,  - nk) cq. dt 

*Using the same method one can obtain the results of the theory 
of superconductivity if w e  consider also, when decoupling the Green 
functions (8.8), functions of the kind <<ak& a+,-&')> (see 
reference 64). i.e., take into account the correlation between el=- 
ttons with opposite momenta and spins. 

W e  note, however, that the first two equations of 
this set are exact. The set (8.9) is a broken-off chain 
of equations for  the Green functions. Changing over to 
the Fourier components of the Green functions in these 
equations, 

(8.10) 

we find from the last three equations of-the set (8.9) 

(8.11) 

The equations for Gk ( E  ) and Gq ( E  ) are then of 
the form 
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I 

We introduce the functions Mk(E) and Pq( E )  which 
by analogy with the quantum theory of fields can be 
called the mass  and polarization operators 

we have then 

(8.14) 
G , ( E ) = -  1 1 

2n E-Tk-hfk  ( E )  ' 
1 1 G, (E)  = - 2n E--o,--Pq ( E )  . 

The fermion and boson single-particle Green functions 
can thus be expressed in t e r m s  of the m a s s  and the 
polarization operator, respectively. 

relation functions 
Using the Green functions we can also find the cor- 

1 
I (aiu (t ' )  aka ( t ) )  = 1 J ,  (0) e - i w ( f - - f ' )  do, 

I 

m 

(8.15) -m 

i m 

( b ;  ( 1 ' )  bq ( t ) )  = \ J ,  (0) e - i w ( t - f ' )  do, 
-cI) 

where Jk and Jq are in accordance with (3.25) defined 
by the relations 

c h  (6) f i&)- G k  (0 - i&) = - iJk (0) (caw + I), 1 
(8.16) G ,  (0 + ie) - C ,  (0  - ie) = - i ~ ,  (0) ( e b  - 1). 

The fermion and boson distribution functions can be 
found by putting t = t' in Eqs. (8.15) 

(8.12) 

The functions Yk ( w ) and yq(  w ) which are also 
temperature dependent play the role of damping. As 
q- 0. the damping yq-- 0. 

of the mass and polarization operators Mk( E ) and 
Pq( E )  when the complex argument E tends to the 
real axis from above and from below (f i r -  0 )  are 
not the same, as %( w) and yq (w) are finite quanti- 
ties. The functions 
singularities on the real axis. 

It is clear  from Eqs. (8.19) that the limiting values 

(E ) and Pq ( E  ) have thus 

We get for the spectral  intensities Jk (w) and Jq(w) 

(8.21) 

(The  expressions for Mk, yk, and Jk were obtained 
in reference 19.) As yk and yq - 0 the spectral  in- 
tensities (8.21) tend to a 6 -shape distribution. 

F c r  the electron and phonon distribution functions 
we get the equations 

I 
m 

do), I n k = R  1 j Y k ( 0 )  ( e S W t 1 ) - '  

{ 0 - T h  - n f k  ( 0))' + 'Y: ( 0 )  

(8.22) -30 

i ,> =If y, (0) (eO@- 1)-1 

{o--o,--P, ( ~ ) p + y ; ( ~ )  J 
-m 

Equations (8.20) and (8.22) are a complete set  of equa- 
tions for  the s ix  functions Mk, Pq. Yk, yq, nk, and uq. 

We a r e  thus led to a self-consistent se t  of nonlinear 
equations, which is very characteristic for  approxima- 

k ,  a 
?q = Y k  ('q) [ - (do dP,' )-z,] -' ' ( P  indicates that the principal value of the cor re-  

sponding integral must be taken). 



plays the role of damping and where ?k and zq are 
determined from the transcendental equations 

Replacing expressions (8.23) for very small values 
of the damping Tk and Tq by 6 functions, we shall 
have for them 

[see (3.27)] and we get from Eqs. (8.22), dropping 
small terms,  for the electron and phonon distribution 
functions 

i I 
- 

n h = ( e B E k + l ) - l ,  v,=(ewq-l)-l; (@=,). (8.25) 

Ek and wq play thus the role of the elementary elec- 
tron and phonon excitations. 

It is clear from Eqs. (8.24) that the temperature 
dependent spectrum of the elementary excitations is 
determined by the real part of the mass operator for 
the electrons and of the polarization operator for the 
phonons . * 

We can use (8.20) to write the equations for the 
elementary excitations (8.24) in the form 

( P  indicates that one should take the principal value 
of the integral). 

Equations (8.22) for nk and vq are Fermi-Dirac 
and Bose-Einstein distributions which a re  "smeared 
out" because of the interaction. The width of the 
smearing-out region is of the order of magnitude of 
the damping & and 
(8.19) determined by t%e imaginary part of the mass 
operator for the electrons or  the polarization operator 
for the phonons. 

In the example considered here we see thus that the 
concept of elementary excitations has an  approximate 
meaning when one neglects damping. 

The singularities of the Green functions (8.14) on 
the real axis of the energy [their existence follows 
from (8.16), since the spectral intensities (8.21) a r e  
not identically equal to zero] are not poles. This is 
clear from Eqs. (8.14) and (8.19) since Yk and yq are 
not identically equal to zero, i.e., there is damping. 
The Green functions have thus a cut along the real 
axis. Only the approximate Green functions for which 
damping is neglected have poles on the real axis and 
they correspond to the energy (8.26) of the elementary 
excitations. 

The damping i s  according to 

*Similar relations for the Frohlich Hamiltonian in the case of 
zero temperature were obtained in reference 47. See reference 18 
for the case of a Hamiltonian with a direct interaction and aon- 
vanishing temperature. 

In the given approximation, which is based upon the 
decoupling of the functions (8.8). the higher-order 
Green functions I'k-q, q, k(E) ,  
Gk-q, k, q( E ) have poles when E equals Tk-q + wq, 
Tk-s - wq, and Tk- - Tk, respectively. If we de- 
couple not the GreenRnctions (8.8), but Green func- 
tions of still higher order, the Fourier components of 
the Green functions (8.6) will no longer have poles and 
damping will occur for them as it does for the single- 
particle Green functions. 

1 
q, k ( E ) ,  and 

8.2. Electron-Lattice Interaction in Semiconductors 

The usual methods of evaluating the electrical con- 
ductivity, starting from Bloch's transport equation, 
are valid only when one can speak about electron colli- 
sions, i.e., when the time of mean free path of the 
electrons T is appreciably larger than the uncertainty 
of the collisions time,58'55 i.e., T >> h/kT. For semi- 
conductors this criterion is satisfied very badly,58 and 
the transport equation gives thus only a very rough 
estimate. 

without using Bloch's transport equation was recently 
considered by Kohn and Luttinger,60 who solved the 
equations of motion of the complete density matrix, 
using perturbation theory and taking damping into ac- 
count. Van Hove" was the f i rs t  to consider equations 
for the density matrix, taking damping into account. 

the electrical conductivity of semiconductors using 
Green fimctions. For semiconductors one can, when 
the electron density is small, start from the picture 
of a single electron interacting with the phonon field. 
In that case one can also use the Hamiltonian (8.1), 
imposing the additional condition that the number of 
electrons N is equal to unity 

The quantum theory of the electrical conductivity 

We shall give here briefly the method of evaluating 

N = 2 ai&k, = I .  (8.27) 

One must then take into account that for any opera- 

ka 

tor  the expressions 

(8.28) , I  

\aklal * . * aisasaqla; - - . aqra;B) = 0 ,  

vanish when s > 1 o r  r > 1. and this greatly simplifies 
the problem. 

Since we consider only one electron, we cannot use 
a grand ensemble with a variable number of particles, 
but must use a canonical ensemble in which the num- 
ber  of particles is constant. In the present subsection 
we denote therefore by < . . . > an average over a 
canonical ensemble. 

phonon field for the weak coupling case. 

A and B commute with the total number of particles 

We consider the interaction of the electron with the 

W e  introduce Green functions in which the operators 

( 7 7 =  1) 
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operators such as <aibqag>, if we take into consid- 
eration that 

d (4 ( t )  b, ( t )  a, ( t ) )  = 0, 

used for (8.31). and using (8.28). W e  get then 

and write this relation down explicitly using the equa- 
tions of motion (8.3) in the same approximation as 

I GPIP1: OZOl ( t  - t ’ )  = K ail  (0 
GPIPPz; S Y l l  ( t  - t ’ )  = K ail (4  b, (0 U P a  ( t ) ;  a;* (f’) as1 (1’) B, 
GPIOPz: 9+ll ( t  - t ’ )  = K UP1 (4  6:, (1) a p 2  (4 ;  a;* ( t ’ )  %7, ( 1 ’ ) ) )  

(4; ( t ’ )  a,l (1’) >> 8 

(8.29) 
(we have dropped the spin indices) and we construct 
for them the chain of equations 

(8.30a) 
These expressions contain besides Aq. which is sup- 
posed to be small, also a factor np. In our case of low 
electron density these terms will thus be small, so  that 
we can to a first approximation neglect in Eqs. (8.32) 
the first two terms. Changing in Eq. (8.30a) to Fourier 
components and substituting into it Eqs. (8.32), after 
neglecting these terms, we get an integral equation for 
the function Gp1p2;g2gl( E 

} GPl+G P 2 f 4 ;  O2P1 + E 4 Tpl+,- Tpn+% 
vq P, -k I =ql (8 .30~)  

In the case of a low electron density one can neglect 
the reaction of the electrons on the lattice and assume 
that the average occupation number of the lattice pho- 
nons 

is the same as if  there were no electrons. We decouple 
then the Green functions by pairing off the operators 
bq referring to the same time 

(8.34) 1 
= px - nPJ 8P,-P*~P1--P,. 

One can also easily take into account the terms (8.33) 
which lead in the right hand side of Eq. (8.34) to an 
additional term with an inhomogeneity of higher order 
than the term written down. 

Equation (8.34) has the form of a transport equa- 
tion* as E - i i e  - 0, as one can easily verify by 
using (3.29) to transform the integrand; terms corre- 
sponding to principal-value integrals cancel one an- 
other then, and there remain terms with 6 functions, 
expressing the fact that energy is conserved during 
collisions. 

Assuming that a solution of equations of the kind of 
(8.34) is known one can evaluate from (4:26) the elec- 
trical conductivity tensor. It is important to note that 
we have here not used a transport equation which might 
in the present case not be applicable. 

9. CONCLUSIONS 

1. Double-time Green functions (retarded and ad- 
vanced) are a convenient means to study systems of 

*The connection between the equation for the pair distribution 
function and the transport equation is also true for an imperfect 
Fermi-gas. 
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large numbers of interacting particles; this is con- 
nected with the fact that one can continue them analyt- 
ically in the complex plane. The Green functions are 
analytical in the whole of the complex energy plane, 
but they have, generally speaking, a cut on the real 
axis (Sec. 3). 

2. The Green functions satisfy a set of coupled equa- 
tions in which only double-time functions occur (Sec. 2). 
Spectral theorems (Sec. 3) enable us to formulate 
boundary conditions for  these equations. If one decou- 
ples these equations by some kind of approximation 
(see, for instance, Secs. 6 to 8) one is able to obtain a 
complete set  of equations for the Green functions, and 
solving these one can evaluate the thermodynamic 
functions of the system. 

3. Green functions are also convenient in studying 
the kinetics of weakly-non-equilibrium processes. The 
transport coefficients can be expressed in te rms  of the 

Properties of Statistical Systems 

Singularities 
of the Green 
functions 

Elementary 
excitation 
spectrum 

Damping 

Behavior of th 
time conela  
tion functions 
as  I t '4 -. DD 

?erfect systems 1 Model systems I Real Systems I 
~~ ~~ 

Analytical in the upper and lower energy half plane 1 
1 Poles on the A cut along the real 

real energy axis real energy axis energy axis 
Poles on the I I 

The same as 
the poles of thc 
single-particle 
Green function 

No damping 

Oscillate 

The same as  
the poles of the 
single-particle 
Green function; 
generally speak 
ing temperature 
dependent 

No damping 
(more exactly: 
asymptotically 
small dampin3 
Oscillate with 
asymptotically 
small damping 

To a h s t  approximation, 
the same a s  the poles 
of the Green function. 
In higher orders there 
are no poles; the spec- 
trum i s  defined in as 
far as  damping can be 
neglected. 
Finite damping 

Oscillate with finite 
damping 

. .  
Fourier components of the retarded Green functions 
evaluated for the state of statistical equilibrium (Sec. 4). L. Van Hove, Physica 21, 901 (1955); 22, 343 (1956). 

4. The examples considered here can be divided 
into three groups: perfect systems (Sec. 5). model 
systems with interactions (Sec. 6), and real systems 
with interactions (Secs. 7 and 8). 

For perfect systems (the perfect Fermi-Dirac o r  
Bose-Einstein gas) the Green functions have poles on 
the real axis. The spectrum of the elementary excita- 
tions is the same as the poles of the single-particle 
Green function, there is no damping, and the time cor- 
relation functions oscillate as It' - t  I- 00. If one as- 
sumes that there is an infinitesimal interaction in the 
perfect gas (which is necessary in order that statisti- 
cal equilibrium can be established in it ) we can as- 
sume that the perfect gas possesses infinitesimally 
small damping. 

For model systems with interaction (Sec. 6) the 
Green functions have poles on the real axis. The 
(temperature dependent) elementary excitation spec- 
trum is the same as the poles of the single-particle 
Green function. There is no damping (more  exact: it 
is asymptotically small as V - 00, V/N = const. ). 
The time correlation functions oscillate as 1 t' - t I - 
with an asymptotically small damping. 

For real systems with interaction the Green func- 
tions have a cut along the real axis and have poles only 
in first approximation. The damping is finite. If one 
neglects damping, the approximate Green functions 
have poles which can be identified with the (tempera- 
ture dependent ) energy of the elementary excitations. 
The energy of the elementary excitations has therefore 
a well-defined meaning only when damping is neglected. 
The time correlation functions oscillate as I t' - t 1 - 00 
with a finite damping. The properties enumerated here 
are given in the table. 
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Translator's Comments: 
This paper should be compared with the series of papers by 

Martin and Schwinger, of which only the first part has appeared so 
far.' Zubarev does not go into a s  detailed a discussion of the 
mathematical properties of Green functions, concentrating rather 
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on applications. It is surprising that neither Zubarev nor Martin and stance by Martin and Schwinger. The advantage lies in the fact that 
Schwinger refer to  the early papers by Husimi’ and Koppe,’ who the advanced and retarded Green functions, or rather their Fourier 
noted the connection between the density matrix and Green functions, transforms, can be analytically continued in the complex energy 
or to Salam’s paper‘ where, probably for the first t ime,  Green func- 
tion techniques were applied to solid-state many-body problems (in 
this case,  superconductivity). Zubarev’s paper discusses double- 
t ime  generalized Green functions which are the averages of the time- 
ordered products of any two operators rather than the normally used 
multipletime many-particle Green functions of field theory which 
are the averages of the time-ordered products of any number of 
second-quantized wave-functions. It must be mentioned, however, 
that Martin and Schwinger in fact used the double-time Green func- 
tions in all applications, and that in most applications Zubarev’s 
Green functions are, indeed, the many-particle ones, although Zu- 
barev makes i t  clear that the generalized Green functions can often 
be used to advantage, for instance in the theory of ferromagnetism. 

Zubarev s t resses  the advantage of the advanced and retarded 
Green functions rather than the causal ones normally used, for in- 

plane. 
The literature quoted by Zubarev is much more comprehensive 

than that quoted by Martin and Schwinger and covers both Russian 
and non-Russian references. Recent developments, especially in 
solid s ta te  theory, have largely occurred in the Soviet Union, apart 
from those on linked cluster expansions of the grand partition func- 
tion. These expansions -where the Green functions occur as propa- 
gators -are discussed neither by Zubarev nor by Martin and Schwinger. 
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