Fermi golden rule derivation

Vyacheslavs (Slava) Kashcheyevs
Faculty of Physics and Mathematics, University of Latvia*
(Dated: September 23, 2008, v1)

I. THE PROBLEM

Consider a discrete level ("quantum dot") coupled to a continuous band ("lead"):

$$
\begin{equation*}
\mathcal{H}=\epsilon_{0}|d\rangle\langle d|+\sum_{k} \epsilon_{k}|k\rangle\langle k|+\sum_{k}\left[V_{k}|k\rangle\langle d|+V_{k}^{*}|d\rangle\langle k|\right] \tag{1.1}
\end{equation*}
$$

The basis states are normalized to 1 adn orthogonal to each other. The sum over the continuous spectrum should be understood in the sense of an integral,

$$
\begin{equation*}
\sum_{k} F\left(\epsilon_{k}\right) \rightarrow \int \rho(\omega) F(\omega) d \omega \tag{1.2}
\end{equation*}
$$

where $\rho(\omega)$ is the density of states. The number of states with energies $\epsilon_{k} \in[\omega . . \omega+d \omega]$ is $\rho(\omega) d \omega$. This number is very large, and diverges as the linear size of the lead goes to infinity.

We shall solve perturbatively the Schrodinger equation

$$
\begin{equation*}
i \hbar \frac{\partial}{\partial t}|\psi(t)\rangle=\mathcal{H}|\psi(t)\rangle \tag{1.3}
\end{equation*}
$$

subject to initial condition:

$$
\begin{equation*}
|\psi(t=0)\rangle=|d\rangle \tag{1.4}
\end{equation*}
$$

The perturbation is the tunneling term, proportional to V_{k}.
Let us parameterize the state vector:

$$
\begin{equation*}
|\psi\rangle=a_{d}|d\rangle+\sum_{k} a_{k}|k\rangle \tag{1.5}
\end{equation*}
$$

The initial condition

$$
\begin{equation*}
a_{d}=1, \quad a_{k}=0 \tag{1.6}
\end{equation*}
$$

Substituting Eqs.(1.5) into (1.3) and equating the corresponding coefficients in front of the (linear independnet) basis vectors gives:

$$
\begin{align*}
& i \hbar \dot{a}_{d}=\epsilon_{0} a_{d}+\sum_{k} V_{k} a_{k} \tag{1.7}\\
& i \hbar \dot{a}_{k}=V_{k}^{*} a_{d}+\epsilon_{k} a_{k} \tag{1.8}
\end{align*}
$$

We shall be interested in the probability to remain in state $|d\rangle$:

$$
\begin{equation*}
P(t)=|\langle d \mid \psi(t)\rangle|^{2}=\left|a_{d}(t)\right|^{2} \tag{1.10}
\end{equation*}
$$

[^0]
A. Perturbative solution (Fermi golden rule)

Order-by-order expansion of the state amplitudes is

$$
\begin{align*}
& a_{d}(t)=a_{d}^{(0)}(t)+a_{d}^{(1)}(t)+a_{d}^{(2)}(t)+\ldots \tag{1.11}\\
& a_{k}(t)=a_{k}^{(0)}(t)+a_{k}^{(1)}(t)+a_{k}^{(2)}(t)+\ldots \tag{1.12}
\end{align*}
$$

Substituting (1.11) into (1.7) and taking into account the initial condition gives

$$
\begin{align*}
& \text { order 0: } \quad i \hbar \dot{a}_{d}^{(0)}(t)=\epsilon_{0} a_{d}^{(0)}(t) \tag{1.14}\\
& i \hbar \dot{a}_{k}^{(0)}(t)=\epsilon_{k} a_{k}^{(0)}(t) \tag{1.15}\\
& \left.\qquad \begin{array}{l}
a_{d}^{(0)}(t)=e^{-i \epsilon_{0} t / \hbar} \\
a_{k}^{(0)}(t)
\end{array}\right)=0 \tag{1.16}
\end{align*}
$$

First order:

$$
\begin{gather*}
\text { order 1: } \quad i \hbar \dot{a}_{d}^{(1)}(t)=\epsilon_{0} a_{d}^{(1)}(t)+\sum_{k} V_{k} \underbrace{a_{k}^{(0)}}_{0}=\epsilon_{0} a_{d}^{(1)}(t) \tag{1.19}\\
a_{d}^{(1)}(t)=0 \tag{1.20}\\
i \hbar \dot{a}_{k}^{(1)}(t)=\epsilon_{k} a_{k}^{(1)}(t)+V_{k}^{*} \underbrace{a_{d}^{(0)}}_{e^{-i \epsilon_{0} t / \hbar}} \tag{1.21}\\
a_{k}^{(1)}(t)=\frac{V_{k}^{*}}{\epsilon_{0}-\epsilon_{k}}\left[e^{-i \epsilon_{0} t / \hbar}-e^{-i \epsilon_{k} t / \hbar}\right] \tag{1.22}
\end{gather*}
$$

Second order:
$\underline{\text { order 2: }} \quad i \hbar \dot{a}_{d}^{(2)}(t)=\epsilon_{0} a_{d}^{(2)}(t)+\sum_{k} \frac{V_{k} V_{k}^{*}}{\epsilon_{0}-\epsilon_{k}}\left[e^{-i \epsilon_{0} t / \hbar}-e^{-i \epsilon_{k} t / \hbar}\right]$

[^0]: *Electronic address: slava@latnet.lv

